Теория струн и скрытые измерения вселенной
Шрифт:
Как оказалось, существует не единственный способ введения квантовых поправок. Благодаря зеркальной симметрии для любого многообразия Калаби-Яу можно построить эквивалентный ему с физической точки зрения зеркальный партнер. Многообразия, являющиеся зеркальными партнерами, описываются двумя различными по виду, но эквивалентными по сути вариантами теории струн, типа IIA и типа IIB, которые описывают одну и ту же квантовую теорию поля. Мы можем сделать эти расчеты относительно легко для модели В, где квантовые поправки оказываются равными нулю. Расчет же для модели А, в которой квантовые поправки в нуль не обращаются, практически невозможен.
Примерно через год после выхода статьи Грина и Плессера, внимание математического сообщества привлекло новое открытие в области зеркальной симметрии. Канделасу, Ксении де ла Осса, Полу Грину и Линде Паркс удалось показать, что зеркальная симметрия может оказать помощь при разрешении
Подобный расчет может показаться весьма странным занятием для того, кто не увлекается нумеративной геометрией, — для тех же, кто работает в этой области, подобная деятельность является вполне привычной. На самом деле задача весьма проста — это не сложнее, чем высыпать на стол конфеты из вазы и сосчитать их. Расчет числа определенных объектов на многообразии и очерчивание круга приложений, в которых полученное число может оказаться полезным, на протяжении столетия или больше были важнейшими задачами для математиков. Число, которое необходимо найти, в конце этого процесса должно оказаться конечным, поэтому поиск нужно ограничить компактными пространствами, небесконечными плоскостями. Если, к примеру, необходимо рассчитать число точек пересечения между двумя кривыми, то в случае наличия точек соприкосновения между кривыми могут возникнуть затруднения. Впрочем, математики, занимающиеся нумеративной геометрией, уже разработали методики, позволяющие разобраться с этими сложностями и получить строго определенное число.
Одна из первых задач такого типа была сформулирована приблизительно в 200 году до нашей эры греческим математиком Аполлонием, которого интересовал следующий вопрос: если даны три окружности, то сколькими способами можно нарисовать четвертую так, чтобы она касалась всех трех одновременно? Ответ на этот вопрос (восемь) может быть получен с помощью линейки и циркуля. Для решения же задачи Шуберта необходимы более сложные вычисления.
В работе над этой задачей математики избрали поэтапный подход, рассматривая за раз только одну степень. Под степенью понимается наивысшая из степеней слагаемых, входящих в многочлен. К примеру, степень полинома 4x2– 5y3 равна трем, 6х3y4+4x — семи (степени х3 и y4 складываются), а 2x+3y-4 — единице (график этой функции — прямая линия). Итак, задача состояла в том, чтобы выбрать многообразие (в нашем случае речь идет о трехмерной поверхности пятого порядка) и степень (порядок) кривых, количество которых необходимо было подсчитать.
Шуберт решил эту задачу для кривых первого порядка, показав, что на поверхности пятого порядка можно провести ровно 2875 кривых. Почти через сто лет после этого, в 1986 году, Шелдон Кац, в настоящее время работающий в Университете штата Иллинойс, показал, что число кривых второго порядка, подобных окружностям, на той же поверхности равно 609 250. Канделас, де ла Осса, Грин и Паркс, в свою очередь, рассмотрели случай кривых третьего порядка, от которого легко перейти к задаче о числе сфер, которые можно разместить в определенном пространстве Калаби-Яу. В этом им помог прием, основанный на зеркальной симметрии. В то время как решение задачи для многообразия пятого порядка было чрезвычайно сложным, его зеркальный партнер, созданный Грином и Плессером, позволял найти намного более простой путь к решению.
Кроме того, в первой статье Грина и Плессера, посвященной зеркальной симметрии, была выдвинута ключевая идея о том, что взаимодействия Юкавы можно представить при помощи двух различных математических формул, одна из которых будет описывать исходное многообразие, а вторая — его зеркальную пару. Первая из этих формул, включающая в себя число рациональных кривых различных степеней, которые можно было обнаружить на многообразии, по словам Грина, была просто «кошмарной». Со второй формулой, зависящей от формы многообразия в более общем виде,
Рис. 7.6. Выдающимся достижением геометрии XIX века стало доказательство математиками Артуром Кэли и Джорджем Сэлмоном утверждения, что поверхность третьего порядка, приведенная на рисунке, содержит ровно 27 прямых. Герман Шуберт впоследствии обобщил этот результат, получивший название теоремы Кэли-Сэлмона (изображение предоставлено 3D-XplorMath Consortium)
Рис. 7.7. Подсчет числа прямых или кривых на поверхности является обычной задачей алгебраической и нумеративной геометрии. Чтобы лучше понять, что подразумевается под числом прямых на поверхности, рассмотрим приведенный на рисунке дважды линейчатый гиперболоид как поверхность, полностью состоящую из прямых. Он называется дважды линейчатым, поскольку через каждую его точку проходят две различные прямые линии. Подобная поверхность плохо подходит для нумеративной геометрии по причине бесконечного числа прямых, которые можно на ней провести (фотография Карена Шаффнера, математический отдел Аризонского университета)
Рис. 7.8. Задача Аполлония, одна из наиболее известных задач в геометрии, посвящена вопросу о числе способов, которыми можно нарисовать окружность, касательную к трем заданным. Постановка задачи и первое решение приписывается греческому математику Аполлонию Пергскому (приблизительно 200 год до нашей эры) На рисунке приведены восемь решений этой задачи — восемь различных касательных окружностей. Спустя две тысячи лет математик Герман Шуберт рассмотрел аналогичную задачу в трехмерном пространстве, показав, что построить сферу, касательную к четырем заданным сферам, можно шестнадцатью способами
«Даже если у тебя есть уравнение, в достоверности которого с формальной точки зрения ты не сомневаешься, решить его с достаточной точностью и получить ответ в виде числа может оказаться сложной задачей, — замечает Грин. — У нас было уравнение, но не было инструментов для получения определенного числа. Канделас и его сотрудники разработали эти инструменты, что стало крупнейшим достижением, оказавшим огромное влияние на геометрию».[104]
Работа Грина и Плессера наглядно иллюстрирует всю мощь зеркальной симметрии. Теперь можно было не утруждать себя подсчетом числа кривых в пространстве Калаби-Яу, поскольку, проведя совершенно другое вычисление — с виду не имеющее ничего общего с работой по подсчету кривых, — можно было получить тот же ответ. Когда Канделас и его коллеги применили этот подход к расчету количества кривых третьего порядка на трехмерной поверхности пятого порядка, они получили число 317 206 375.
Наш интерес, однако, заключался не столько в определении количества рациональных кривых, сколько в исследовании многообразия как такового. Дело в том, что в процессе подсчета мы по сути дела перемещаемся по кривым, используя хорошо разработанные методики, до тех пор пока не проходим все пространство. В ходе этой процедуры мы фактически определяем пространство — неважно, будет это трехмерная поверхность пятого порядка или какое-либо другое многообразие, — в терминах данных кривых.
Результатом всего вышесказанного стало второе рождение уже порядком подзабытой области геометрии. По словам Марка Гросса, математика из Калифорнийского университета, идея использования зеркальной симметрии для решения задач нумеративной геометрии, впервые предложенная Канделасом и его сотрудниками, привела к возрождению целой дисциплины. «К тому времени эта область исследований почти полностью исчерпала себя, — говорит Гросс. — Когда все старые задачи были решены, ученые занялись перепроверкой чисел Шуберта при помощи современных вычислительных технологий, но это занятие едва ли можно было назвать увлекательным. И вдруг, как гром с ясного неба, Канделас заявил о разработке ряда новых методов, выходящих далеко за пределы того, что мог представить себе Шуберт».[105] Физики многое заимствуют из математики, а вот математики, прежде чем заимствовать из физики метод Канделаса, прежде всего потребовали более детального обоснования его строгости.