Теория струн и скрытые измерения Вселенной
Шрифт:
Рис. 5.2.Наглядная иллюстрация метода Ньютона. Для того чтобы найти точку пересечения определенной кривой или функции с осью X, сначала нужно наугад подобрать некую точку x 0 наиболее подходящую для этого. Затем необходимо провести касательную к кривой в точке x 0 и отметить точку, в которой эта касательная пересечет ось X(это будет точка x 1 ). В том случае, если наше изначальное предположение не было полностью ошибочным, продолжая этот процесс, мы будем получать точки все ближе и ближе к искомой
Одна из этих частей носит название метода Ньютона, так как она в определенной степени основана на методе, разработанном Исааком Ньютоном более трехсот лет назад. Для
В качестве еще одного примера рассмотрим набор уравнений E t только одно из которых, Е 0 (для которого t = 0), мы способны решить. При этом в действительности нам нужно решить уравнение E 1 (для которого t = 1). Мы могли бы использовать метод Ньютона, если мы находимся в непосредственной близости к точке t = 0, решение уравнения в которой хорошо известно, но этот подход не может привести нас к 1. В этом случае необходимо прибегнуть к другому методу оценки, обладающему большей применимостью.
Как же это сделать? Представим, что над Тихим океаном была запущена ракета, которая приземлилась в радиусе ста миль от атолла Бикини. Это дает нам некоторое представление о том, где ракета может быть, другими словами – ее общую позицию, но мы хотели бы знать больше, например ее скорость, или ее ускорение, или как это ускорение изменялось в течение полета. Это можно сделать при помощи дифференциального исчисления – путем взятия первой, второй и третьей производных от функции, описывающей зависимость положения ракеты от времени. С таким же успехом можно брать производные и более высоких порядков, но для эллиптических уравнений второго порядка того типа, которым я занимаюсь, третьей производной вполне хватает.
Одного лишь знания производных функции недостаточно, хотя задача по их нахождению сама по себе может быть чрезвычайно трудоемкой. Кроме того, производные нужно «контролировать». Иными словами, необходимо установить для них границы – удостовериться, что они не могут быть ни чрезвычайно велики, ни чрезвычайно малы. Только в этом случае полученные решения будут «стабильны» – то есть не будут бесконтрольно раздуваться, тем самым дисквалифицируя себя как решения и разрушая наши надежды на них. Итак, взяв для начала нулевую производную – то есть исходную функцию, описывающую изменение положения ракеты с течением времени, мы устанавливаем для нее наличие верхних и нижних границ – иными словами, делаем оценки, показывающие, что решение по крайней мере возможно. Та же самая операция проводится для всех производных более высоких порядков, что позволяет удостовериться в том, что они не являются ни бесконечно большими, ни бесконечно малыми, а функции, их описывающие, не флуктуируют совершенно беспорядочным образом. Это позволяет априори оценить скорость, ускорение, зависимость ускорения от времени и т. д. Если мы можем таким образом проверить все производные от нулевой до третьей, значит, у нас есть хороший способ оценить уравнение в целом и приличный шанс найти его решение. Подобный процесс оценки и доказательства того, что оценочные данные сами по себе находятся под контролем, как правило, представляют самую сложную часть всего процесса.
Итак, в конце концов, все сводится к оценкам. Есть что-то ироническое в моем признании их актуальности для решения проблемы,
Два десятилетия спустя, когда я включился в игру, сама проблема не изменилась. Она по-прежнему оставалась невероятно сложной, хотя математический аппарат за это время успел развиться настолько, что решение стало в принципе возможным. Проблема состояла лишь в том, чтобы найти верный подход или, по крайней мере, создать необходимую точку опоры. Так что я подобрал более простое уравнение, а затем постарался показать, что его решение может в конечном счете «деформироваться» в решение более сложного уравнения.
Предположим, что вам нужно решить уравнение f(x) = x 2 – xпри f(x)= 0. Подставим для начала x = 2и убедимся, что этот вариант не подходит: f(2) = 2, а не 0. Тем не менее у нас теперь есть решение, если не для исходного уравнения, то для чего-то подобного. Перепишем первоначальное уравнение как f(x) = 2t. Для случая t = 1его решение уже известно ( x = 2), и теперь задача состоит в том, чтобы решить его при t = 0. Как же это сделать? Рассмотрим параметр t. Что произойдет, если немного изменить значение t, так, чтобы оно уже не было равно точно 1, но все же оставалось близким к единице? Интуиция подсказывает, что если tбудет близко к 1, значение f(t)будет близко к 2. Это предположение оказывается верным для большинства случаев, а это означает, что при tблизком к 1мы можем решить уравнение.
Теперь будем уменьшать t, так чтобы рано или поздно его значение достигло нуля и в результате мы получили исходное уравнение. Выбирая все меньшие и меньшие значения t, будем записывать для каждого из них соответствующие решения уравнения. В результате возникнет последовательность точек, в которых решение уравнения существует, и каждой из этих точек соответствует собственное значение x, которое я буду называть x i . Смысл этого упражнения заключается в том, чтобы доказать, что последовательность x i сходится к определенному значению. Для этого нужно показать, что x i ограниченно и не может возрастать до бесконечности, потому что для любой ограниченной последовательности по крайней мере некоторые ее части должны сходиться. Показав сходимость x i , мы тем самым покажем возможность уменьшения величины tдо 0без столкновения с какими-либо непреодолимыми препятствиями. И если мы сможем это сделать, мы тем самым решим уравнение, показав, что случай с t = 0также имеет решение. Иными словами, мы покажем, что решение исходного уравнения x 2 – х=0должно существовать.
Именно такие рассуждения я использовал при доказательстве гипотезы Калаби. Ключевым моментом доказательства стала необходимость показать, что x i представляют собой сходящуюся последовательность. Конечно, уравнение, лежащее в основе гипотезы Калаби, было намного сложнее, чем x 2 – х=0. В этом уравнении в роли xвыступало не число, а функция, что безмерно увеличивало сложность, поскольку сходимость последовательности функций доказать, как правило, весьма и весьма непросто.