Чтение онлайн

на главную

Жанры

Теория струн и скрытые измерения Вселенной
Шрифт:

Основная проблема данного типа симметрии относится к особой разновидности преобразования, называемой параллельным переносом. Параллельный перенос, как и операция поворота, является линейным преобразованием: это преобразование подразумевает такое перемещение векторов вдоль определенной траектории на поверхности или многообразии, при котором сохраняются не только длины всех векторов, но и углы между любой парой векторов. В тех случаях, когда параллельный перенос сложно представить наглядно, точный путь перемещения векторов можно рассчитать при помощи метрики, решая дифференциальные уравнения.

На плоской, евклидовой поверхности все очень просто: нужно только сохранять направление и длину каждого вектора. На искривленных поверхностях и для произвольных многообразий условие постоянства длин и углов сохраняется, хотя и несколько усложняется по сравнению с евклидовым пространством.

Особенность кэлерова многообразия состоит в следующем: если при помощи операции параллельного переноса переместить вектор Vиз точки Pв

точку Qвдоль заданной траектории, то результатом этого перемещения станет новый вектор W 1 . Применив к вектору операцию поворота на 90 градусов (J-операцию), мы получим новый вектор JW 1 . С тем же успехом можно сначала применить к вектору Vоперацию поворота (J-операцию), в результате которой возникнет новый вектор JV,по-прежнему начинающийся в точке P. Если после этого параллельно перенести вектор JVв точку Qи полученный вектор назвать W 2 , то в случае кэлерова многообразия векторы JW 1 и W 2 будут идентичны вне зависимости от пути перемещения между точками Pи Q. Можно сказать, что на кэлеровом многообразии J-операция инвариантна относительно параллельного переноса. Для комплексных многообразий в общем случае это не так. Можно сформулировать это условие и в другом виде: на кэлеровом многообразии параллельный перенос вектора с последующим его поворотом аналогичен повороту вектора с последующим параллельным переносом. Эти две операции коммутируют – поэтому не имеет значения, в каком порядке их выполнять. В общем случае это не так, как наглядно объяснил Роберт Грин: «Открыть дверь и затем выйти из дому – это далеко не то же самое, что выйти из дому и лишь затем открыть дверь».

Основная идея параллельного переноса проиллюстрирована на рис. 4.3 для поверхности с двумя вещественными измерениями или одним комплексным (поверхность с большим числом измерений нарисовать проблематично). Впрочем, этот случай скорее тривиален, поскольку число возможных направлений поворота ограничено числом два: влево и вправо.

Однако уже для двух комплексных измерений (четырех вещественных) число векторов определенной длины, перпендикулярных любому заданному вектору, бесконечно велико. Эти векторы образуют касательное пространство, которое в двухмерном случае можно представить как огромный кусок фанеры, лежащий на верхушке баскетбольного мяча. В этом случае знание того, что необходимый нам вектор перпендикулярен некоему другому, известному нам, едва ли заметно упростит его нахождение – если только многообразие, которому он принадлежит, не является кэлеровым. Для кэлерова многообразия, зная вектор, полученный при повороте на 90 градусов (J-преобразовании) в одной из точек многообразия, можно точно предсказать величину и направление подобных векторов в любой другой точке, поскольку параллельный перенос дает возможность переместить этот вектор из первой точки во вторую.

Рис. 4.3.На первом рисунке изображен параллельный перенос вектора Vиз точки Pв точку Q, в которой этот вектор приобретает новое имя W 1 . Затем при помощи так называемой J-операции вектор W 1 поворачивается на 90 градусов. Повернутый вектор носит название JW 1 . На втором рисунке J-операция проводится над вектором Vв точке P, результатом которой становится новый вектор (повернутый на 90 градусов) – JV. При помощи параллельного переноса этот вектор перемещают в точку Q, где он получает новое имя W 2 . В обоих случаях результирующие векторы будут одинаковы. Это один из признаков кэлерова многообразия, а именно независимость результата от последовательности, в которой выполняются операции поворота и параллельного переноса. Эти две операции коммутируют, то есть порядок их выполнения не имеет значения

Существует еще один способ показать, что эта простая операция (поворот на 90 градусов, или J-преобразование) тесно связана с симметрией. Этот тип симметрии называется четырехкратной симметрией,поскольку при каждом J-преобразовании вектор поворачивается на 90 градусов. В результате четырех последовательных преобразований вектор повернется на 360 градусов и, пройдя полный круг, вернется в начальную точку. Иначе говоря, два J-преобразования аналогичны умножению на -1. Четыре преобразования приведут к умножению вектора

на единицу (-1Ч-1=1). В результате мы вернемся к тому, с чего начали.

Очевидно, что данная симметрия применима только к касательному пространству в определенной точке, но для того чтобы это свойство было действительно полезным, четырехкратная симметрия должна сохраняться и при перемещении по всему пространству. Эта согласованность является важной особенностью внутренней симметрии. Представьте себе стрелку компаса, которая характеризуется двухкратной симметрией в том смысле, что она может указывать только в двух направлениях – северном и южном. Если при вращении компаса в пространстве его стрелка будет беспорядочным образом указывать то на север, то на юг без какой-либо причины, можно сделать вывод о том, что пространство, в котором вы находитесь, либо не обладает соответствующей симметрией, либо не имеет заметного магнитного поля (либо вам пора покупать новый компас). Аналогично, если J-операция дает разные результаты в зависимости от положения точки на многообразии и направления поворота, то это означает, что в многообразии отсутствуют порядок и предсказуемость, обеспечиваемые симметрией. Более того, вы можете быть уверены, что это многообразие не кэлерово.

Внутренняя симметрия, во многом определяющая кэлеровы многообразия, ограничена касательным пространством к данным многообразиям. Это может иметь определенные преимущества, поскольку на касательном пространстве результат любой операции не зависит от выбора системы координат. Именно это свойство – независимость результатов операции от выбора системы координат – представляет чрезвычайный интерес как с геометрической, так и с физической точки зрения. Проще говоря, если результаты зависят от выбора ориентации осей или начала координат, то для нас они неинтересны.

Рис. 4.4.На рисунке проиллюстрирован простой и весьма очевидный факт: квадрат имеет четырехкратную симметрию относительно его центра. Иными словами, повернув квадрат четыре раза на 90 градусов, мы получим исходную фигуру. Поскольку J-операция представляет собой поворот на 90 градусов, она также имеет четырехкратную симметрию, и четыре поворота приведут к исходному объекту. Формально говоря, J-операция действует только на касательные векторы, поэтому она – весьма грубый аналог вращения фигуры, подобной квадрату. J-преобразование, как обсуждается в тексте, является вещественным аналогом умножения на i. Умножение некого числа на iчетыре раза равноценно умножению его на единицу, и оно, подобно проведенной четыре раза J-операции, неизбежно приведет к тому числу, с которого мы начали

Требование внутренней симметрии наложило на представленный Калаби математический мир ряд дополнительных ограничений, значительно упростив его и сделав проблему доказательства его существования потенциально разрешимой. Впрочем, Калаби не обратил внимания на некоторые другие следствия из его теории; на самом деле внутренняя симметрия, наличие которой он предположил для своих многообразий, является особой разновидностью суперсимметрии, что особенно важно для теории струн.

Последние два фрагмента нашей мозаики – классы Черна и кривизна Риччи – возникли из попыток геометров обобщить одномерные римановы поверхности на случай многих измерений и затем попытаться математически описать различия между ними. Это привело к возникновению важной теоремы, относящейся к компактным римановым поверхностям, – как, впрочем, и ко всем компактным поверхностям, не имеющим границ. Определение границыв топологии дается скорее на интуитивном уровне: диск имеет границу, или четко определенный край, тогда как сфера границы не имеет. На поверхности сферы можно сколь угодно долго двигаться в любом направлении, никогда не достигая никакой границы и даже не приближаясь к ней.

Теорема, сформулированная в XIX веке Карлом Фридрихом Гауссом и французским математиком Пьером Бонне, связала геометрию поверхности с ее топологией.

Согласно формуле Гаусса-Бонне, общая гауссова кривизна подобных поверхностей равна произведению эйлеровой характеристики поверхности на 2 р. Эйлерова характеристика, обозначаемая греческой буквой ч(«хи»), в свою очередь равна 2–2 g, где g– это род (число «дырок» или «ручек» на данной поверхности). К примеру, эйлерова характеристика двухмерной сферы, не имеющей дырок, будет равна 2. Эйлер вывел отдельную формулу для нахождения эйлеровых характеристик любого многогранника: ч =V-E+F, где V– число вершин, E– число ребер, a F– число граней. Для тетраэдра ч =4-6+4=2, точно так же, как и для сферы. Для куба, имеющего 8 вершин, 12 ребер и 6 граней, ч =8-12+6=2– снова то же, что и для сферы. Причина того, что эти топологически идентичные (хотя и геометрически различные) объекты имеют одинаковую величину заключается в том, что эйлеровы характеристики всецело определяются топологией объекта и не зависят от его геометрии. Эйлерова характеристика чстала первым из основных топологических инвариантов пространства– величин, остающихся неизменными – инвариантными– для пространств, имеющих совершенно различный внешний вид, подобно являющимся топологически эквивалентными сфере, тетраэдру и кубу.

Поделиться:
Популярные книги

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Идеальный мир для Социопата 12

Сапфир Олег
12. Социопат
Фантастика:
фэнтези
постапокалипсис
рпг
7.00
рейтинг книги
Идеальный мир для Социопата 12

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Сонный лекарь 7

Голд Джон
7. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 7

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь