Теория струн и скрытые измерения Вселенной
Шрифт:
Добавление новых петель к проволочной сетке приводит к следующей проблеме: расчеты бета-функции, которые и без того чрезвычайно сложны, при возрастании числа петель становятся еще сложнее, и объем вычислений многократно возрастает. Расчеты показали, что первые три слагаемых степенного ряда, как и было предсказано ранее, равны нулю – что весьма обнадежило физиков. Однако в статье 1986 года Маркус Грисару, физик, в настоящее время работающий в Университете Макгилла, и двое его коллег, Антон ван де Вен и Даниэла Занон, обнаружили, что четырехпетлевая бета-функция в нуль не обращается. Последовавший за этим расчет, выполненный Грисару и его коллегами, показал, что пятипетлевая бета-функция тоже не равна нулю. Это открытие стало заметным ударом по позициям, занимаемым в физике многообразиями Калаби-Яу, поскольку из него следовало, что метрика данных многообразий не приводит к сохранению
«У меня, как у сторонника теории струн и суперсимметрии, наши результаты вызвали некоторое беспокойство, – говорит Грисару. – Мы, конечно, были счастливы, что эти результаты в некоторой степени прославили нас, но слава разрушителя прекрасного здания – это далеко не то, чего можно желать каждому. Впрочем, мое мнение о науке заключается в том, что нужно смириться с теми результатами, которые ты получил».[85]
Однако не все еще было потеряно. В статье, выпущенной в 1986 году Дэвидом Гроссом и Виттеном, работавшими тогда в Принстоне, было показано, что, несмотря на то что для риччи-плоской метрики многообразий Калаби-Яу конформная инвариантность действительно не соблюдается, эту метрику можно слегка изменить так, чтобы бета-функция, как и требовалось, обратилась в нуль. Подобная «настройка» метрики проводится не за один, а за бесконечное число корректировок, или квантовых поправок. Но в подобных случаях, когда поправки представляют собой бесконечный ряд, неминуемо возникает вопрос: сойдется ли этот ряд в конце концов к искомому решению? «Может ли выйти так, что, сведя воедино все поправки, никакого решения вы не получите?» – задается вопросом Плессер.
В лучшем случае небольшое изменение метрики приведет к незначительному изменению решения. К примеру, нам известно, как решать уравнение 2x=0, его ответом является x=0. «Если теперь я захочу решить уравнение 2x=-0,1, то обнаружу, что ответ изменился весьма несущественно ( x=-0,05), – что является для меня оптимальным вариантом», – поясняет Плессер. Уравнение x 2 =0также не вызывает особых затруднений (вновь x=0). «Но если я попытаюсь решить уравнение x 2 =-0,1, то обнаружу, что оно попросту не имеет решения, по крайней мере, в действительных числах, – говорит он. – Итак, вы видите, что небольшое изменение параметров может привести как к тому, что решение лишь немного изменится, так и к тому, что оно вообще исчезнет [например, для вещественных чисел]».[86]
Как было установлено Гроссом и Виттеном, для исправленного многообразия Калаби-Яу последовательный ряд поправок сходится. Они показали, что, если почленно исправлять метрику Калаби-Яу, в результате возникнет сложнейшее уравнение, которое тем не менее можно решить. При этом все петли бета-функции устремятся к нулю.
После этого, по словам Шамита Качру из Стэнфорда, «вопрос о том, чтобы полностью отбросить многообразия Калаби-Яу, уже не стоял; теперь достаточно было только слегка их модифицировать. И, поскольку изначально не существовало возможности записать метрику Калаби-Яу, необходимость ее небольшого преобразования не стала чем-то особо удручающим».[87]
Дальнейшее развитие идей о способах преобразования метрики Калаби-Яу основано на появившейся в том же году работе Денниса Немесчанского и Ашока Сена, в то время работавших в Стэнфорде. Полученное в результате исправления многообразие топологически оставалось многообразием Калаби-Яу, а его метрика – почти риччи-плоской, хотя и не совсем. Немесчанский и Сен вывели точную формулу, показывающую степень отклонения модифицированной метрики от риччи-плоского случая. Их работа, совместно с работой Гросса и Виттена, «помогла сохранить многообразия Калаби-Яу для физики, поскольку без них пришлось бы прекратить исследования в целой области», – утверждает Сен. Более того, по словам Сена, без первого допущения о том, что многообразия Калаби-Яу, фигурирующие в теории струн, являются риччи-плоскими, добраться до окончательного решения было бы невозможно. «Если бы мы начали с метрики, не являющейся риччи-плоской, сложно даже представить, при помощи каких методик мы получили бы исправленный вариант».[88]
Я полностью согласен с Сеном, хотя и не считаю, что допущение о риччи-плоской метрике многообразий Калаби-Яу
Следующие существенные шаги в вопросе восстановления в правах многообразий Калаби-Яу были сделаны Дороном Гепнером, в то время постдоком в Принстоне, на протяжении нескольких лет, начиная с 1986 года. Гепнер разработал несколько конформных теорий поля, каждая из которых в рамках соответствующих физических понятий обладала потрясающим сходством с описаниями отдельных многообразий Калаби-Яу определенного размера и формы. Изначально Гепнер обнаружил, что физика, относящаяся к его теории поля, – включая определенные симметрии, поля и частицы, – имеет тот же вид, что и физика струны, движущейся в определенном многообразии Калаби-Яу. Это привлекло его внимание, поскольку связь между двумя столь, казалось бы, несвязанными вещами, как конформная теория поля и многообразия Калаби-Яу, казалась поистине сверхъестественной.
Одним из тех, кто проявил чрезвычайный интерес к этой новости, стал Брайан Грин – в то время мой гарвардский постдок, специалист в области математических обоснований многообразий Калаби-Яу, закончивший докторскую диссертацию по этому предмету и, кроме того, имевший солидную подготовку в области конформной теории поля. Он тут же связался с учеными с физического факультета, также работавшими в области конформных теорий, в том числе с двумя аспирантами – Роненом Плессером и Жаком Дистлером. Дистлер и Грин начали совместное исследование корреляционных функций, связанныхс конформной теорией поля и соответствующим многообразием Калаби-Яу. Корреляционные функции в этом случае включали в себя так называемые «взаимодействия Юкавы», определяющие взаимодействия частиц между собой, в том числе и такие взаимодействия, которые наделяли частицу массой. В статье, представленной весной 1988 года, Дистлер и Грин объявили, что корреляционные функции – или взаимодействия Юкавы – для конформной теории поля и соответствующих многообразий Калаби-Яу численно совпадают, что стало еще одним подтверждением их тесной взаимосвязи, если не сказать больше.[89] Гепнер пришел к аналогичному выводу относительно совпадения величин взаимодействий Юкавы в статье, поданной в печать вскоре после этого.[90]
В частности, Дистлер, Грин и независимо от них Гепнер обнаружили, что для многообразий определенного размера и формы можно рассчитать все корреляционные функции, представляющие собой набор математических выражений, которые, будучи сведены воедино, полностью характеризуют конформную теорию поля. Иными словами, результатом стала возможность представить связь между конформной теорией поля и многообразиями Калаби-Яу в строгих и исчерпывающих понятиях, путем определения как типа конформной теории поля со всеми корреляционными функциями, так и точного размера и формы соответствующего многообразия Калаби-Яу. Таким образом, ограниченному классу многообразий Калаби-Яу, известных на сегодняшний день, стало возможным сопоставить соответствующую модель Гепнера.
Эта связь, нашедшая надежное подтверждение в конце 1980-х годов, помогла опровергнуть мнение относительно бесполезности многообразий Калаби-Яу. Как сказал Качру, «можно не сомневаться в существовании предложенных им [Гепнером] конформных теорий поля, поскольку они являются полностью разрешимыми, в том числе и в численном виде. И если истинность этих теорий не вызывает сомнений, а их свойства аналогичны свойствам компактификаций Калаби-Яу, то в достоверности этих компактификаций также можно не сомневаться».[91]