Чтение онлайн

на главную - закладки

Жанры

Ткань космоса. Пространство, время и текстура реальности
Шрифт:

В сравнении с этим странно звучащим утверждением проблемы в установлении точного соответствия между модами колебаний струн и известными типами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не мелкая деталь — это действительнопроблема.

Или они существуют?

Теоретические открытия, сделанные в течение первых десятилетий XX в., задолго до появления на сцене теории струн, показали, что дополнительные измерения совсем не обязаны быть проблемой. И, переосмыслив эту проблематику, в конце XX в. физики показали, что эти дополнительные измерения дают возможность перекинуть мост через пропасть между модами колебаний в теории струн и элементарными частицами, открытыми экспериментаторами.

Это одно из самых впечатляющих достижений теории; посмотрим, как это работает.

Объединение в высших измерениях

В 1919

г. Эйнштейн получил статью, которую легко можно было выбросить как бред сумасшедшего. Она была написана малоизвестным немецким математиком по имени Теодор Калуца и в нескольких коротких страницах закладывала подход к объединению двух сил, известных в то время, — гравитации и электромагнетизма. Чтобы достигнуть этой цели, Калуца предложил радикальный отказ от кое-чего настолько основополагающего, считавшегося гарантированным в такой степени, что, казалось бы, не может вызывать никаких вопросов. Он предположил, что Вселенная имеет не три пространственных измерения. Калуца попросил Эйнштейна и остальное физическое сообщество принять во внимание возможность, что Вселенная имеет четырепространственных измерения, так что вместе с временем она имеет пять пространственно-временных измерений.

Во-первых, что это вообще означает? Когда мы говорим, что имеется три пространственных измерения, мы имеем в виду, что имеется три независимых направления, или оси, вдоль которых вы можете двигаться. Из вашего текущего положения вы можете описать их как влево/вправо, назад/вперёд и вверх/вниз; во Вселенной с тремя пространственными измерениями любое движение, которое вы предпринимаете, является некоторой комбинацией движений в этих трёх направлениях. Другими словами, во Вселенной с тремя пространственными измерениями вам нужно три блока информации, чтобы определить положение. В городе, например, чтобы определить, где у вас вечеринка, вам нужно знать улицу, где стоит здание, номер дома по этой улице и номер этажа. А если вы ещё хотите сказать людям, до какого момента еда будет ещё горячей, вам также надо определить четвёртый блок данных: время. Это то, что мы имеем в виду, говоря, что пространство-время четырёхмерно.

Калуца предположил, что в дополнение к осям влево/вправо, назад/вперёд и вверх/вниз Вселенная на самом деле имеет ещё одно пространственное измерение, которое по некоторым причинам никто никогда не видел. Если это так, то это означает, что имеется ещё одно независимое направление, в котором могут осуществляться движения, и, следовательно, нам нужно задать четыре блока данных, чтобы определить точное положение в пространстве, и всего пять блоков данных, если мы также определяем время.

Вот что предлагала статья, полученная Эйнштейном в апреле 1919 г. Спрашивается, почему Эйнштейн её не выбросил? Мы не видим другое пространственное измерение — нам никогда не приходилось бесцельно плутать из-за того, что улица, номер дома и номер этажа почему-то недостаточны, чтобы определить адрес, — так почему же стоит рассматривать такую странную идею? А вот почему. Калуца обнаружил, что уравнения общей теории относительности Эйнштейна могут быть легко и красиво математически расширены на Вселенную, которая имеет на одно пространственное измерение больше. Калуца предпринял это расширение и обнаружил, что версия общей теории относительности с большим числом измерений не только включает исходные уравнения гравитации Эйнштейна, но вследствие дополнительного пространственного измерения также и дополнительные уравнения. Когда Калуца изучил эти дополнительные уравнения, он открыл нечто чрезвычайное: дополнительные уравнения были не чем иным, как уравнениями, которые в XIX в. открыл Максвелл для описания электромагнитного поля! Представив Вселенную с одним новым пространственным измерением, Калуца предложил решение проблемы, которую Эйнштейн рассматривал как одну из самых важных проблем всей физики. Калуца нашёл схему, которая объединила уравнения общей теории относительности Эйнштейна с уравнениями электромагнетизма Максвелла.Вот почему Эйнштейн не выбросил статью Калуцы.

Интуитивно, вы можете представить предложение Калуцы следующим образом. В общей теории относительности Эйнштейн заставил двигаться пространство и время. Эйнштейн понял, что искривление и растяжение пространства и времени есть геометрическое воплощение гравитационной силы. В статье Калуцы предполагалось, что геометрическое богатство пространства и времени ещё больше. В то время как Эйнштейн нашёл, что гравитационные поля могут быть описаны как деформации и рябь в трёх обычных пространственных и одном времённом измерении, Калуца обнаружил, что во Вселенной с дополнительным пространственным измерением могли бы быть дополнительные деформации и неровности. И эти деформации и неровности, как показал его анализ, могли бы в точности подойти для описания электромагнитного поля. В руках Калуцы геометрический подход к пониманию Вселенной самого Эйнштейна продемонстрировал достаточную силу, чтобы объединить гравитацию и электромагнетизм.

Конечно, проблема осталась. Хотя математика работала, но как не было, так и до сих пор нет свидетельств существования пространственного измерения за пределами трёх,

о которых мы все знаем. Так что же, открытие Калуцы было всего лишь курьёзом, или оно имеет какое-то отношение к нашей Вселенной? Калуца очень доверял теории — он, например, учился плавать путём изучения учебника по плаванию и только лишь затем путём плавания в море, — но идея о невидимом пространственном измерении, независимо от того, насколько неотразима теория, всё же звучит слишком вызывающе. Затем в 1926 г. шведский физик Оскар Клейн добавил к идее Калуцы новый поворот, который может объяснить, где скрываются дополнительные измерения.

Скрытые измерения

Чтобы понять идею Клейна, представим Филиппа Пети [78] , гуляющего по длинному покрытому резиной канату, туго растянутому между горами Эверест и Лхоцзе. Разглядываемый с расстояния многих километров, как на рис. 12.5, канат выглядит как одномерный объект вроде линии — объект, который имеет протяжённость только вдоль своей длины. Если мы узнаем, что вдоль каната навстречу Филиппу ползёт крохотный червячок, мы будем изо всех сил кричать Филиппу, чтобы он остановился, чтобы избежать беды. Конечно, после короткого размышления мы сообразим, что канат имеет дополнительную поверхность, кроме измерения влево/вправо, которое мы можем непосредственно воспринимать. Хотя её трудно различить невооружённым взглядом с большого расстояния, но поверхность каната имеет второе измерение: измерение по и против часовой стрелки, измерение, которое «закручено» вокруг каната. С помощью скромного телескопа это циклическое измерение становится видимым, и мы видим, что червяк может двигаться не только по длинному, развёрнутому измерению влево/вправо, но также и по короткому, «скрученному» направлению по/против часовой стрелки. Так что в каждой точке каната червяк имеет два независимых направления, по которым он может двигаться (это то, что мы имеем в виду, когда мы говорим, что поверхность каната двумерна [79] ), поэтому он может безопасно освободить дорогу Филиппу или уползая от него вперёд, или отползая вдоль маленького циклического измерения вбок и давая возможность Филиппу пройти мимо.

78

Филипп Пети — знаменитый французский канатоходец, прошедший в 1974 г. по канату, натянутому между башнями-близнецами в Нью-Йорке (теми самыми, что были разрушены в результате теракта 11 сентября 2001 г.). (Прим. ред.)

79

Если вы посчитаете все направления влево, вправо, по часовой стрелке и против часовой стрелки отдельно, вы придёте к заключению, что червяк может двигаться в четырёх измерениях. Но когда мы говорим о «независимых» измерениях, мы всегда группируем те из них, которые лежат вдоль одинаковых геометрических осей — вроде влево и вправо, а также по часовой стрелке и против часовой стрелки.

Рис. 12.5.На удалении туго натянутый канат или провод выглядит одномерным, хотя в достаточно сильный телескоп его второе, скрученное измерение становится видимым

На примере каната видно, что измерения — независимые направления, в которых что-либо может двигаться, — выступают в двух качественно различных вариантах. Они могут быть большими и легко видимыми, как размерность поверхности каната влево/вправо, или они могут быть маленькими и более трудно различимыми, как размерность по/против часовой стрелки, которая закручена вокруг поверхности каната. В этом примере не является большой проблемой увидеть маленький круговой ободок на поверхности каната. Всё, что нам нужно было, это подходящий увеличительный инструмент. Но, как вы можете представить, чем меньше скрученное измерение, тем труднее его будет обнаружить. Одно дело, на расстоянии нескольких километров обнаружить циклическое измерение поверхности каната; но совсем другое — обнаружить циклическое измерение чего-то столь тонкого, как зубная нить или тончайшее нервное волокно.

Вклад Клейна заключался в предположении, согласно которому то, что справедливо для объектов внутриВселенной, может быть справедливо и для ткани самой Вселенной. А именно, точно так же, как поверхность каната имеет как большое, так и маленькое измерение, так и ткань пространства может иметь большие и маленькие размерности. Может оказаться, что три известных всем нам измерения — влево/вправо, назад/вперёд, вверх/вниз — подобны горизонтальной протяжённости каната; они являются большими размерностями, легко видимой разновидностью измерений. Но точно так же, как поверхность каната имеет маленькое дополнительное циклическое измерение, может быть и ткань пространства также имеет настолько маленькое дополнительное циклическое измерение, что ни у кого нет достаточно мощного увеличительного устройства, чтобы обнаружить его существование. Вследствие его ничтожного размера, утверждал Клейн, это измерение будет скрытым.

Поделиться:
Популярные книги

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Системный Нуб 4

Тактарин Ринат
4. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб 4

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Энфис 5

Кронос Александр
5. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 5

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле