Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Представьте себе, что оригинальная рукопись начинена столь тонкой игрой слов, рифм, иносказаний и национально-окрашенных шуток, что целиком текст невозможно изящно перевести ни на один из пяти предложенных языков. Некоторые отрывки можно легко перевести на язык суахили, тогда как прочие отрывки совершенно не подходят для выражения на этом языке. Зато часть прочих отрывков хорошо передаётся на языке инуитов, и ещё часть прекрасно звучит на санскрите. Однако остаются и отрывки, совершенно не поддающиеся переводу ни на один из языков, и тогда никак не обойтись без оригинального текста. Примерно такая ситуация и с пятью теориями струн. Теоретики обнаружили, что по определённым вопросам одна из пяти теорий может давать прозрачное описание физической картины, тогда как описания остальных четырёх теорий слишком сложны в математическом отношении. И в этом состоит сила открытия Виттена. До этого теоретического прорыва теоретики могли упереться в невероятную сложность решения выведенных уравнений. Но работа Виттена показала, что каждый такой вопрос допускает четыре перевода на
Но это не панацея. Подобно тому как все пять переводов некоторых отрывков оригинального текста могут быть одинаково непонятными, так и математические описания проблемы, даваемые всеми пятью теориями, иногда понять одинаково трудно. В таких случаях для дальнейшего продвижения нам нужно полное понимание ускользающей M-теории (подобно обращению к оригинальному тексту). Но, несмотря на это, в огромном числе случаев словарь Виттена даёт мощный новый инструмент для анализа теории струн.
Следовательно, подобно тому как каждый перевод сложного текста служит важной цели, так и каждая формулировка теории струн играет свою важную роль. Сочетая точки зрения каждой теории, мы обретаем возможность отвечать на вопросы, непосильные каждой из теорий в отдельности. Таким образом, открытие Виттена упятерило силы теоретиков, развивающих теорию струн. Вот почему, в значительной части, оно вызвало настоящую революцию в теории струн.
Одиннадцать измерений
Итак, какие достижения последовали благодаря вновь обретённой силе анализировать теорию струн? Их было множество. Я сосредоточусь только на тех, которые больше всего повлияли на проблему пространства и времени.
Прежде всего, работа Виттена вскрыла, что в приближённых уравнениях, использовавшихся в 1970–1980-х гг. и приводивших к выводу, что Вселенная должна иметь девять пространственных измерений, упускалось одно пространственное измерение. Точный анализ Виттена показал, что согласно M-теории Вселенная имеет десять пространственных измерений, т. е. одиннадцать измерений пространства-времени. Подобно тому как Калуца открыл, что пять измерений пространства-времени давали основание для объединения электромагнетизма и гравитации, и подобно тому как теоретики обнаружили, что десять измерений пространства-времени достаточно для объединения квантовой механики и общей теории относительности, так и Виттен открыл, что во Вселенной с одиннадцатью измерениями пространства-времени можно объединить все теории струн. Можно привести такую аналогию: пять селений с уровня земли кажутся совершенно отдельными друг от друга, но если взглянуть на них с вершины горы и тем самым задействовать дополнительное, вертикальное, измерение, то будет видно, что все селения соединены между собой сетью тропинок. Дополнительное пространственное измерение, появившееся из анализа Виттена, сыграло столь же важную роль при установлении связей между всеми пятью теориями струн.
Хотя открытие Виттена определённо следует исторически сложившейся схеме достижения единства за счёт добавления измерения, но его результат потряс все основания, когда он объявил о нём на ежегодной международной конференции по теории струн. Исследователи, включая меня, долго и много работали над приближёнными уравнениями, и все были уверены, что число пространственных измерений установлено правильно. Но Виттен обнаружил нечто совершенно поразительное.
Он показал, что во всех предыдущих работах допускалось одно математическое упрощение, равносильное предположению, что ранее необнаруженное десятое пространственное измерение чрезвычайно мало, гораздо мельче остальных. Оно в действительности столь мало, что у приближённых уравнений теории струн не хватало сил обнаружить даже намёк на существование десятого измерения. Но на базе новых представлений объединяющей M-теории Виттен смог выйти за рамки приближённых уравнений, провести более тонкий анализ и показать, что одно пространственное измерение всегда упускалось. Таким образом, Виттен показал, что пять десятимерных конструкций, развивавшихся в теории струн на протяжении более чем десятилетия, были в действительности пятью приближёнными описаниями единой одиннадцатимерной теории.
Можно задаться вопросом, перечеркнуло ли это неожиданное открытие предыдущую работу в теории струн. В общем и целом, не перечеркнуло. Открытое десятое пространственное измерение добавило непредвиденное свойство теории, но если теория струн / M-теория верна, и если десятое пространственное измерение действительно гораздо меньше остальных (что неявно предполагалось долгое время), то предыдущая работа имеет законное основание. Однако, поскольку в рамках известных уравнений всё ещё не удаётся ухватить размеры или формы дополнительных измерений, то в последние несколько лет струнные теоретики приложили немало усилий к исследованию новой возможности не столь малого десятого измерения. Помимо прочего, широкомасштабные результаты этих исследований подвели прочное математическое основание под схематическую иллюстрацию объединяющей силы M-теории (рис. 13.1).
Я подозреваю, что переход от десяти к одиннадцати измерениям не сильно сказался на вашем представлении о теории (несмотря на значимость этого перехода для математической структуры теории струн / M-теории).
Но второе и тесно связанное с первым следствие второй суперструнной революции действительно меняет интуитивно представляемую картину теории струн. В коллективной работе ряда исследователей — Виттена, Даффа, Халла, Таунсенда и многих других — было установлено, что теория струн — это теория не только струн.
Браны
В предыдущей главе у вас мог возникнуть естественный вопрос: почему именно струны? Что такого особенного в одномерных структурах? Мы установили, что для примирения квантовой механики с общей теорией относительности решающим является тот факт, что струны — не точки, что они имеют ненулевой размер. Но этому требованию можно удовлетворить с помощью двумерных объектов, таких как миниатюрные диски или мембраны, или с помощью трёхмерных образований, подобных мячам или комкам глины. На эту роль сгодятся объекты и более высокой размерности, поскольку теория изобилует пространственными измерениями. Почему такие объекты не играют никакой роли в наших фундаментальных теориях?
В конце 1980-х — начале 1990-х гг. казалось, что у теоретиков есть убедительный ответ. Они говорили, что уже предпринималисьпопытки сформулировать фундаментальную теорию на основе каплеподобных объектов; среди прочих это пытались сделать такие выдающие физики XX в., как Вернер Гейзенберг и Поль Дирак. Но их работа, как и последующие исследования, показала, что на базе каплеподобных объектов чрезвычайно трудно разработать теорию, которая удовлетворяла бы самым основным физическим требованиям — например, гарантировала бы, чтобы все квантово-механические вероятности лежали в диапазоне от 0 до 1 (отрицательные вероятности или вероятности, превышающие 1, не имеют никакого смысла), и не допускала бы передачу информации со скоростью, превышающей скорость света. Полвека исследований, начатых в 1920-х гг., показали, что этим условиям можно удовлетворить в рамках представлений о точечных частицах (пока игнорируется гравитация). А в 1980-х гг., после более чем десятилетия исследований Шварца, Шерка, Грина и других теоретиков, к удивлению большинства физиков было установлено, что этим же условиям можно удовлетворить, взяв в качестве элементарных составляющих одномерные объекты — струны (и обязательно включивгравитацию). Но казалось невозможным использовать в качестве элементарных составляющих объекты с двумя или более пространственными измерениями. Коротко говоря, дело в том, что число симметрий, допускаемых уравнениями, невероятно возрастает для одномерных объектов (струн), а затем резко падает с увеличением количества измерений. Обсуждаемые симметрии носят более абстрактный характер, чем те, что обсуждались в главе 8 (они имеют отношение к тому, как меняются уравнения, когда при изучении движения струны или объекта более высокой размерности мы увеличиваем или уменьшаем его размер, тем самым неожиданно и произвольно меняя степень разрешения наших наблюдений). Эти преобразования критически важны для формулировки физически осмысленной системы уравнений, и казалось, что требуемое изобилие терялось при переходе к двумерным объектам и объектам более высокой размерности. {172}
Большинство теоретиков, работающих в области теории струн, пережили ещё один шок, когда работа Виттена и лавина последовавших за ней результатов {173} привели к осознанию того, что теория струн и границы M-теории, в которые она вписалась, действительносодержит некоторые объекты помимо струн. Анализ показал, что имеются двумерные объекты, естественным образом названные мембранами(отсюда и ещё одно возможное толкование буквы «M» в названии M-теории) или, ради систематизации, 2-бранами. Допустимы и трёхмерные объекты, названные, соответственно, 3-бранами. Анализ также показал, что существуют и объекты с pпространственными измерениями (хотя их и трудно себе представить), где pможет быть любым целым числом, меньшим 10, — они, соответственно, получили название p-бран. Таким образом, струны являются лишь одним из возможных элементарных объектов теории струн, но не единственнымобъектом.
Прочие объекты ранее ускользали от теоретических исследований во многом по той же причине, что и десятое измерение: приближённые уравнения теории струн слишком грубы, чтобы ухватить их. Теоретический анализ показал, что p– браны должны быть существенно тяжелее струн. А чем массивнее объект, тем больше требуется энергии, чтобы его создать. При крайне высоких энергиях, характерных для p– бран, приближённые уравнения становятся столь неточными, что не могут обнаружить браны, которые остаются в тени, — вот почему браны не удавалось заметить целыми десятилетиями. Но благодаря различным переформулировкам и новым подходам, предоставленным объединяющей концепцией M-теории, исследователи смогли обойти некоторые из технических препятствий и теперь, чисто математическим путём, открыли всё богатство объектов с более высокой размерностью. {174}