Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Форма скрытых измерений
Уравнения теории струн на самом деле определяют больше, чем просто число пространственных измерений. Они также определяют, какую форму могут принимать дополнительные размерности. {170} На предыдущих рисунках мы сосредоточились на простейших формах — окружности, полые сферы, сплошные шары, — но уравнения теории струн выбирают существенно более сложный класс шестимерных форм, известных как пространства или многообразия Калаби–Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шин-Тун Яу, которые математически открыли их задолго до того, как была понята их связь с теорией струн; грубая иллюстрация одного примера дана на рис. 12.9 а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже в этих условиях рисунок даёт грубое представление о том, на что похожи эти многообразия. Если то частное пространство Калаби–Яу, которое показано на рис. 12.9 а, составляет
Рис. 12.9.( а) Один из примеров многообразия (или пространства) Калаби–Яу. ( б) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби–Яу
Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.
Физика струн и дополнительные измерения
Красота общей теории относительности в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, естественно, можете предположить, что мощь геометрии в определении физики может значительно возрасти. И это действительно так. Чтобы это увидеть, рассмотрим вопрос, который я до сих пор обходил стороной. Почему теория струн требует десять пространственно-временных измерений? Это вопрос, на который трудно ответить без привлечения математики, но я попытаюсь объяснить, как это получается в результате взаимодействия геометрии и физики.
Представьте струну, которая может колебаться только вдоль двумерной поверхности плоского стола. Струна будет в состоянии колебаться разными способами, но только такими, которые включают движения в направлениях вправо/влево и вперёд/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, которое выходит за пределы поверхности стола, становятся допустимыми дополнительные моды колебаний. Итак, хотя это и трудно изобразить более чем в трёх измерениях, это заключение — большее количество измерений означает большее количество мод колебаний — является общим. Если струна может колебаться в четвёртом пространственном измерении, она может колебаться большим числом способов, по сравнению с тремя измерениями; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырёх измерениях; и т. д. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и её уравнения становятся бессмысленными. Во Вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний всё ещё слишком мало; для пяти, шести, семи или восьми измерений оно всё ещё слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений. [80] {171}
80
Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнёмся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн, являются приближёнными (точные уравнения оказывается трудно найти и понять). Однако большинство думает, что приближённые уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к изумлению большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближённые уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компрометирует материал, обсуждаемый в этой главе, но показывает, что он должен быть вложен в более широкую, фактически ещё более унифицированную схему. {226}
Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их связь в рамках теории струн идёт ещё дальше и, фактически, обеспечивает способ решения критической проблемы, с которой мы сталкивались ранее. Напомним, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых мод колебаний струны и, более того, точные свойства мод колебаний не соответствуют свойствам известных частиц материи и переносчиков взаимодействий. Но,
Струны столь малы, что даже когда дополнительные шесть измерений свёрнуты в пространство Калаби–Яу, они могут колебаться в этих направлениях. Это чрезвычайно важно по двум причинам. Во-первых, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому условие на число мод колебаний продолжает выполняться, даже когда дополнительные измерения свёрнуты. Во-вторых, точно так же, как на колебания потока воздуха, продуваемого через трубу, влияют повороты и изгибы музыкального инструмента, моды колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав трубу длиннее, моды колебаний воздуха и, следовательно, звук инструмента изменятся. Аналогично, если форму и размер дополнительных измерений модифицировать, это также существенно повлияет на точные свойства возможных способов колебаний струны. А поскольку способ колебания струны определяет её массу и заряд, то это значит, что дополнительные измерения играют центральную роль в определении свойств частиц.
Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на моды колебаний струн, а значит, на свойства частиц.Поскольку базовая структура Вселенной — от формирования галактик и звёзд до существования жизни, как мы её знаем, — чувствительно зависит от свойств частиц, код космоса вполне может быть записан в геометрии пространства Калаби–Яу.
На рис. 12.9 был представлен один пример пространства Калаби–Яу, но имеются по меньшей мере сотни тысяч других возможностей. Тогда вопрос заключается в том, которое из многообразий Калаби–Яу, если это действительно имеет место, соответствует части пространственно-временной ткани, связанной с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только при определённом выборе пространства Калаби–Яу детально определяются свойства колебательных мод струны. На сегодняшний день этот вопрос остаётся без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает решение задачи о выборе одной формы из многих; с точки зрения известных уравнений каждое пространство Калаби–Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько именно малы, остаётся открытым.
Является ли это фатальным пороком теории? Возможно. Но я так не думаю. Как мы будем подробнее обсуждать в следующей главе, точные уравнения теории струн ускользают от теоретиков в течение многих лет, поэтому во многих работах использовались приближённые уравнения. Это позволило выделить многие свойства теории струн, но в некоторых вопросах — включая точный размер и форму дополнительных измерений — приближённых уравнений недостаточно. Поскольку мы продолжаем уточнять наш математический анализ и совершенствовать эти приближённые уравнения, определение формы дополнительных измерений является первой — и, на мой взгляд, достижимой — целью. Но до сих пор эта цель остаётся за пределами достигнутого.
Тем не менее мы можем задаться вопросом, приводит ли выбор дополнительных измерений в форме пространства Калаби–Яу к модам колебаний струны, которые близко аппроксимируют известные частицы. И здесь ответ вполне удовлетворительный.
Хотя мы далеки от того, чтобы исследовать все возможности, но были найдены примеры пространств Калаби–Яу, которые приводят к модам колебаний струн, которые в грубом приближении согласуются с табл. 12.1 и 12.2. Например, в середине 1980-х гг. Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (команда физиков, которые обнаружили связь пространств Калаби–Яу с теорией струн) нашли, что каждая дырка (термин, используемый в точно определённом математическом смысле), содержащаяся в пространстве Калаби–Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби–Яу с тремя дырками, следовательно, могло бы дать объяснение для повторяющейся структуры трёх поколений элементарных частиц в табл. 12.1. Действительно, был найден ряд таких «трёхдырочных» пространств Калаби–Яу. Более того, среди этих предпочтительных пространств Калаби–Яу есть такие, которые в точности дают как правильное число частиц — переносчиков взаимодействий, так и правильные электрические заряды и другие ядерные свойства частиц в табл. 12.1 и 12.2.
Это чрезвычайно воодушевляющий результат; он никоим образом не был гарантирован. В попытке соединить общую теорию относительности с квантовой механикой теория струн вполне могла бы остановиться на определённом этапе, обнаружив при этом невозможность каким-нибудь способом подобраться к решению столь же важной задачи объяснения свойств известных частиц материи и взаимодействий. Ввиду возможности такого малоутешительного исхода исследователи воспряли духом в надежде, что теория когда-нибудь засияет. Но идти дальше и рассчитать точные массы частиц значительно труднее. Как мы говорили, частицы в табл. 12.1 и 12.2 имеют массы, которые отличаются от колебаний струны с наинизшей энергией, соответствующей нулю планковских масс — менее чем на одну миллионную от миллиардной доли планковской массы. Расчёты таких бесконечно малых отклонений требуют уровня точности, лежащего за пределами того, что мы можем получить с нашим сегодняшним пониманием уравнений теории струн.