Том 27. Поэзия чисел. Прекрасное и математика
Шрифт:
Наконец, вычислим искомое соотношение плеч рычага. Чтобы читатель смог лучше понять эстетику этих рассуждений, напомним ему фразу Эмиля Шартье (Алена): «Прекрасное не доставляет удовольствие или неудовольствие — оно заставляет нас задержаться». Подробные рассуждения выглядят следующим образом.
Архимед счел, что треугольник BDC образован множеством отрезков XT, параллельных оси параболы (или стороне треугольника BD), а сегмент параболы BVC образован множеством прямых отрезков ХР, параллельных оси параболы, как показано на следующем рисунке. Представление геометрической фигуры в виде множества отрезков было чем-то доселе невиданным в математике. В следующий раз этот метод был применен в XVII веке, спустя почти две тысячи лет.
Далее
Следовательно, если мы перенесем отрезок, образующий параболу, к левому концу рычага Ei, при этом на правом конце рычага Ed положение отрезка, образующего треугольник, останется неизменным (как показано на рисунке ниже),
рычаг будет находиться в равновесии.
Следовательно, при рассмотрении параболы как совокупности отрезков Архимеду удалось сбалансировать на разных концах рычага параболу (ее центр тяжести совпадает с точкой Ei) и треугольник, центр тяжести которого, точка G, совпадает с правым концом рычага.
Согласно правилу рычага, соотношение площадей параболы и треугольника обратно пропорционально отношению плеч рычага, на которых располагаются парабола и треугольник. Это соотношение равно одной третьей, что объясняется на следующей странице. Следовательно, площадь сегмента параболы BVC равна одной трети площади треугольника BDC.
* * *
ПРОПОРЦИЯ И РАВНОВЕСИЕ
Рассмотрим подробнее, почему соотношение плеч рычага, на котором уравновешены треугольник и парабола, равно одной третьей. В силу особенностей построения левое плечо рычага EiF равно отрезку FC, а правое плечо рычага — это отрезок FG. Центр тяжести треугольника — это точка пересечения его медиан (прямых, соединяющих вершины треугольника с центрами противоположных сторон). Центр тяжести делит медианы в соотношении 2:1, считая от вершины. Так как FC — медиана треугольника (этот отрезок соединяет вершину С и середину стороны В), длина отрезка FG будет равна одной трети длины отрезка FC.
* * *
Рассуждения Архимеда, позволившие ему вычислить квадратуру параболы, помогут нам ответить на непростой вопрос: можно ли назвать ученого творцом? Толчком к этой полемике стали размышления об эстетике.
Большинство, возможно, полагает, что термин «творец» неприменим к ученым в целом и математикам в частности. К примеру, Фернандо Саватер в «Вопросах жизни» писал: «Творец — тот, кто создает что-то, что без него никогда не появилось бы на свет, тот, кто привносит в мир что-то, что без него никогда не могло бы существовать именно в таком виде, а не в другом, более или менее похожем». Так, Александр Флеминг не «изобрел» пенициллин, а открыл его: «Если бы он не открыл пенициллин, рано или поздно другой мудрец открыл бы лечебные свойства этого чудесного грибка. Напротив, если бы Моцарт или Сервантес умерли бы в младенчестве, никто бы не написал «Волшебную флейту» и не рассказал бы историю Дон Кихота». С философом Саватером согласны и другие ученые, например лауреат Нобелевской премии по медицине Франсуа Жакоб.
Любой научный факт имеет два аспекта. Первый аспект — это само открытие, будь то теорема, универсальный закон, галактика или химический элемент, второй — форма, в которой было совершено это открытие. Если мы используем термин «открытие», то уместно было бы назвать ученых «первооткрывателями». Однако порой случается — возможно, редко, но все же случается, — что ученого уместно назвать творцом, так как он совершил или представил свое открытие совершенно уникальным способом.
Так, можно сказать, что Архимед не был творцом соотношения площадей сегмента параболы и треугольника — рано или поздно это соотношение обнаружил бы и другой ученый. Однако Архимед не просто определил соотношение между площадями фигур, а сделал это определенным образом. И именно этот конкретный способ уравновешивания площадей посредством рычага можно назвать результатом творчества. Как мы не можем представить картину «Менины» без Веласкеса, так и эти геометрические рассуждения нельзя представить без Архимеда. Можно сказать, что Архимед открыл формулу квадратуры параболы, но его исполненный эстетики метод разделения фигур на отрезки с их уравновешиванием — результат творчества в полном смысле этого слова, о котором говорил Саватер: «без него [это] никогда не могло бы существовать именно в таком виде, а не в другом, более или менее похожем».
Если бы Архимед умер в младенчестве, никто не вычислил бы площадь сегмента параболы, уравновесив ее с треугольником с помощью рычага, и это исторический факт, а не личное мнение. Рассуждения Архимеда уникальны, а сам его труд под названием «Метод», в котором ученый объяснил свои расчеты, дошел до наших дней благодаря удивительным обстоятельствам. Подобно множеству античных научных трудов и художественных произведений, работы Архимеда не раз могли бесследно затеряться. И некоторые его книги действительно оказались утеряны. Эта участь могла ожидать все или почти все труды Архимеда, которые на протяжении многих веков сохранялись в виде одной-двух рукописей. Ветер Истории переносил их с одного побережья Средиземного моря на другое, как сухую листву, в то время как совсем рядом гремели боевые барабаны, солдаты мародерствовали, а пожары уничтожали целые города.
«Метод» Архимеда и письменные источники
Древнейшие рукописи с трудами Архимеда, о которых нам известно, были созданы в Константинополе в Х-м или, что маловероятно, в IX веке. Должны были существовать и более древние рукописи, в том числе и написанные самим Архимедом в III веке до н. э., но все они утрачены.
Архимед наверняка создал все или большинство своих трудов в изоляции от других ученых, в родных Сиракузах. В этом городе он родился в 287 году до н. э., однако в юности учился в Александрии — центре эллинистической математики и науки вообще (Александрия имела этот статус начиная с момента основания Александром Македонским и до V века). Закончив обучение в Александрии, Архимед вернулся в Сиракузы, где прожил большую часть жизни. Если говорить современным языком, то научные труды Архимеда, дошедшие до наших дней, представляют собой монографии. Они были написаны в разные годы и попали из Сиракуз в Александрию и даже в Самос, где жил Конон, один из самых близких друзей Архимеда. В число этих монографий входит «Метод», представляющий для нас наибольший интерес. Это длинное письмо Архимеда к Эратосфену, который в то время был главой Александрийской библиотеки. В этом письме Архимед излагает свой метод совершения научных открытий.
Весьма вероятно, что все произведения Архимеда попали в Александрию разными путями, и ни при его жизни, ни в первые годы после его смерти не образовывали единое целое. По своему масштабу и размаху труды Архимеда значительно превосходят «Начала» Евклида. Большая часть «Начал» содержала элементарные рассуждения, и это заставляет предполагать, что было создано множество копий труда Евклида. А вот работы Архимеда имели более высокий уровень и были понятны лишь посвященным. Естественно, что они существовали лишь в нескольких копиях, которые, возможно, хранились в Александрийской библиотеке или в ее отделении в Серапеуме. В результате часть копий была утеряна, другая серьезно пострадала. Ущерб, нанесенный произведениям Архимеда, стал заметен уже спустя полвека после его смерти — об этом упоминали авторы, которые не смогли найти некоторые из теорем Архимеда. Однако из других источников известно, что еще в III–IV веках существовали произведения Архимеда, до наших дней не дошедшие, — возможно, они были утеряны при разрушении Серапеума в 391 году.
В первой трети VI столетия была предпринята попытка объединить труды Архимеда, упорядочить их и снабдить комментариями. Нельзя утверждать, что это была первая из подобных попыток, но упоминаний о более ранних собраниях сочинений Архимеда не сохранилось. Следующее действие этой истории развернулось в Константинополе, когда на смену Восточной Римской империи пришла Византийская империя, а императора Юстина, грубого и безграмотного служаку, сменил образованный Юстиниан, знаток богословия и права. Во время его правления, возможно, возродился интерес к античной математике. Это не привело к появлению видных математиков, однако в результате для потомков были сохранены некоторые важные труды, в том числе произведения Архимеда. Это стало своеобразным реквиемом по греческой науке: в 529 году Юстиниан издал указ о закрытии Академии Платона и других научных и философских центров, которые якобы проповедовали языческое учение.