Чтение онлайн

на главную - закладки

Жанры

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
Шрифт:

На самом деле в статье 1931 года Гёдель представил две теоремы. Одна из них — уже упомянутая первая теорема о неполноте, также известная как теорема Гёделя. Именно ее мы доказали в предыдущей главе и вернемся к ней еще. В теореме говорится, что если выбрать в качестве арифметических аксиом любое множество истинных высказываний и принимать только доказательства, проверяемые алгоритмически, то всегда найдется истинное высказывание, недоказуемое на основе этих аксиом.

Другая теорема, которую Гёдель представил в этой статье 1931 года, сегодня известна как вторая теорема о неполноте, или вторая теорема Гёделя. В ней говорится о невозможности алгоритмически проверить истинность множества арифметических аксиом. Мы обсудим эту

теорему чуть позже. Следует сказать, что в статье не содержалось ее детального доказательства. Гёдель ограничился лишь тем, что в общих чертах изложил идею и отметил, что собирается написать вторую часть статьи с полным доказательством. Однако болезнь помешала ему сделать это в ближайшие месяцы, а после выздоровления выяснилось, что доказательства обеих теорем (даже второй, о которой ученый только намекнул) получили всеобщее признание. В этой ситуации Гёдель не счел нужным публиковать дополнительные пояснения, поэтому вторая часть статьи так и не была написана. (Оригинальное название статьи на немецком языке заканчивается римской цифрой I: это указывает на то, что речь идет только о первой части. В переводах на испанский, английский и другие языки ее обычно опускают.)

Преодолев нервный кризис, Гёдель в 1933 году начал работу в Венском университете в качестве приват-доцента. В то время в университетах Центральной Европы с должности приват-доцента обычно начинали карьеру преподавателя. Кроме того, как мы уже сказали, Гёдель превратился в международную знаменитость и в том же году был приглашен в США прочитать лекцию на ежегодном собрании Американского математического общества.

Во время этой первой поездки в США Гёдель познакомился с Альбертом Эйнштейном, который эмигрировал туда в 1933 году. Между ними сразу зародилась теплая дружба, которая длилась до самой смерти Эйнштейна в 1955 году.

В последующие два года, 1934 и 1935, Гёдель снова ездил в США, уже по приглашению Института перспективных исследований в Принстоне. В этом учреждении он прочитал несколько курсов и лекций, не только по своим теоремам о неполноте, но и по темам, затронутым в последующих исследованиях. Среди них, например, такая проблема: существует ли алгоритм, который при заданном множестве аксиом и высказывании Р позволит определить, доказуемо ли Р на основе этих аксиом? Гёдель получил несколько частичных решений, а полностью проблема была решена в 1936 году американским логиком Алонзо Чёрчем, который доказал, что алгоритма с такими

характеристиками не существует. Эта проблема, как и другие, поставленные самим Гёделем или другими логиками, вдохновленными его исследованиями, положила начало теории вычислимости, то есть изучению того, при каких условиях математическая проблема решаема алгоритмически.

ИНСТИТУТ ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ В ПРИНСТОНЕ

Институт перспективных исследований в Принстоне (Нью-Джерси, США), основанный в 1930 году, имел целью собрать международную научно-исследовательскую элиту. И действительно, в нем трудились такие прославленные ученые, как Курт Гёдель, Альберт Эйнштейн, Джулиус Роберт Оппенгеймер (американский физик-теоретик, научный руководитель Манхэттенского проекта), Джон фон Нейман, Оскар Моргенштерн (последние двое — создатели теории игр) и Герман Вейль (выдающийся немецкий физик и математик).

Во время поездок в США Гёдель продемонстрировал свои методы, идеи и поставленные им проблемы, и это дало импульс развитию американской школы математической логики, где блистали Уиллард ван Орман Куайн, Стивен Коул Клини и уже упомянутый Алонзо Чёрч. Также работы Гёделя дали толчок развитию математической логики

в целом; по сравнению с другими ученый публиковал очень мало научных работ, но каждая из них открывала новую отрасль в логике и вводила методы и идеи, актуальные до сих пор.

АЛОНЗО ЧЁРЧ

Алонзо Чёрч был одним из главных представителей американской школы математической логики, которая образовалась практически сразу после прочтения Гёделем курсов и лекций в США в 1930-х годах. Чёрч родился в Вашингтоне 14 июня 1903 года и изучал математику в Принстонском университете, где защитил докторскую диссертацию в 1927 году. Его научным руководителем был Освальд Веблен (который помогал в организации Института перспективных исследований в Принстоне и пригласил Гёделя прочитать там свои первые лекции). Чёрч внес вклад в логику первого порядка, теорию вычислимости (которая исследует, какие математические проблемы могут быть решены алгоритмически, а какие нет) и теоретическую информатику. Он также создал лямбда-исчисление, которое до сих пор является важным инструментом в изучении теории алгоритмов. Ученый скончался в США в 1995 году.

АНШЛЮС

В то время как Гёдель наслаждался плодами растущего академического престижа, политическая ситуация в Вене становилась всё более сложной. После того как Адольф Гитлер пришел к власти, он объявил о своем намерении сделать Австрию частью Германии. С этой целью он начал политическое и военное давление на соседнюю страну. В 1931 году он потребовал, чтобы нацистская партия, которая в Австрии была запрещена, получила признание и вошла в состав правительства. Однако на выборах в Австрии в апреле 1932 года нацисты не одержали ожидаемой победы, так что перешли в оппозицию и прибегли к террористическим методам. Произошла серия терактов, убийств высокопоставленных лиц и попыток государственного переворота, которые к 1937 году привели Австрию к угрозе гражданской войны.

Насколько известно, первые годы этой бурной политической жизни особо не затронули Гёделя, который без перерывов продолжал свои исследования и поездки в США. Но 22 июня 1936 года Мориц Шлик, один из его наставников и основатель Венского кружка, был убит. Когда Гёдель узнал об этом, у него случился новый нервный срыв, на восстановление после которого потребовалось несколько месяцев. В том году ученый снова должен был отправиться в США, но поездку пришлось отменить. Гёдель не смог возобновить научную работу до 1937 года.

В феврале 1938 года Гитлер выдвинул ультиматум: Австрия должна добровольно присоединиться к Третьему рейху, или ее присоединят силой. После многочисленных споров, во время которых дважды сменилось правительство, в марте был проведен референдум о присоединении к Германии. Голосование не было секретным; бюллетень с отметкой принимал офицер СС, который и помещал его в урну. При таких обстоятельствах неудивительно, что за присоединение к Германии проголосовало более 99% избирателей, после чего 12 марта Австрия стала провинцией нацистской Германии (это событие было названо аншлюсом, что по-немецки означает "присоединение" или "аннексия").

Нацисты сразу же реформировали австрийскую университетскую систему, после чего некоторые интеллектуалы, включая Гёделя, остались без работы. Однако это не помешало ему в сентябре 1938 года заключить брак с Адель Поркерт, разведенной танцовщицей на шесть лет старше его, с которой Гёдель познакомился в 1927 году. Возможно, брак был первым шагом, необходимым для эмиграции, о которой Гёдель уже думал.

Адель и Курт были очень крепкой, любящей парой, хотя они и не демонстрировали публично нежность друг к другу.

Поделиться:
Популярные книги

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Идеальный мир для Социопата 12

Сапфир Олег
12. Социопат
Фантастика:
фэнтези
постапокалипсис
рпг
7.00
рейтинг книги
Идеальный мир для Социопата 12

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Сонный лекарь 7

Голд Джон
7. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 7

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь