Чтение онлайн

на главную - закладки

Жанры

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
Шрифт:

Во второй теореме о неполноте говорится, что нельзя доказать непротиворечивость аксиом Пеано... но мы только что его доказали. Как это возможно? Ответ, конечно же, в том, что во второй теореме о неполноте на самом деле говорится: невозможно доказать непротиворечивость аксиом Пеано, пользуясь методами программы Гильберта. Доказательство непротиворечивости, которое мы только что осуществили, следовательно, является корректным рассуждением, но не подчиняется ограничениям этой программы: корректность доказательства нельзя проверить алгоритмически.

Это ведет нас напрямую к следствию из теорем Гёделя: не существует алгоритма, который мог бы во всех случаях проверить истинность или ложность арифметического высказывания (если бы это было так,

компьютер мог бы проверить корректность доказательства о непротиворечивости, которое мы вывели выше, что, согласно второй теореме Гёделя, невозможно). Другими словами, никогда нельзя будет запрограммировать компьютер так, чтобы можно было доказать все гипотезы арифметики (речь идет о принципиальном ограничении, которое не сможет преодолеть технический прогресс), компьютеры никогда не превзойдут математиков (хотя, как мы увидим далее, также неясно, всегда ли математики будут способны превосходить компьютеры).

Итак, вторая теорема о неполноте оказывается ложной, если мы применим при доказательстве семантические методы. Но что произойдет с первой теоремой Гёделя? Можно доказать, что если мы допустим семантические методы, то любая арифметическая истина доказуема на основе аксиом Пеано. Под семантическими методами мы понимаем те, что основаны на понятии истины. Логическое правило, которое используется в этих рассуждениях, таково: из Р выводится Q, если во всех мирах (или моделях), где Р истинно, Q также истинно (см. рисунок). Вновь возьмем пример доказательства, который мы рассматривали в главе 2, и зададимся вопросом, справедлив ли вывод:

из равенства (а - b) · а = (а - b) с мы делаем вывод, что а = с,

где Р — это высказывание "(а - b) · а = (а - b) · с", a Q — это "а = с". Вывод несправедлив, поскольку существует модель (пример), в которой Р истинно, a Q ложно. Действительно,

если мы возьмем а = b = 2 и с = 3, то получается, что Р истинно, a Q ложно.

При заданном высказывании существует потенциально бесконечное число миров, где оно может быть истинным. Значит, если на одном шаге семантического доказательства мы говорим, что из Р выводится Q, чтобы узнать, верно ли это, нам придется проверить потенциально бесконечное число случаев, где Р истинно, и убедиться, что во всех также истинно Q. Это предполагает бесконечное число проверок, которое не может быть осуществлено компьютером. Также неясно, может ли оно быть осуществлено человеческим разумом.

НЕЕВКЛИДОВЫ ГЕОМЕТРИИ

Евклидова геометрия, изложенная в работе ученого "Начала" (III век до н. э.), основана на пяти постулатах, или аксиомах, которые могут быть сформулированы следующим образом.

1. Через две точки можно провести единственную прямую.

2. Отрезок можно продолжить из любого его конца.

3. При любом центре и любом радиусе можно провести окружность.

4. Все прямые углы равны между собой.

5. Через точку, не лежащую на прямой, можно провести единственную прямую, параллельную данной.

Итальянский математик Эудженио Бельтрами.

Первые четыре постулата очевидны, но пятый имеет высокую понятийную сложность и может оказаться не таким явным, как остальные. На самом деле оригинальная формулировка Евклида для пятого постулата была еще сложнее (выше приведена самая известная формулировка, предложенная английским математиком Джоном Плейфэром в конце XVIII века). Интересно добавить, что в своих доказательствах Евклид старался меньше использовать пятый постулат (как будто он сам немного не доверял его справедливости).

Доказательство Эудженио Бельтрами

В течение многих веков считалось, что пятый постулат можно доказать на основе четырех других. Было сделано много попыток найти доказательство, но все они провалились. Наконец, в 1868 году Эудженио Бельтрами доказал, что пятый постулат неразрешим относительно остальных четырех, то есть ни сам постулат, ни его отрицание не могут быть доказаны на их основе. Это был первый в истории известный пример неразрешимости относительно множества аксиом — за несколько десятков лет до того, как Гёдель доказал свою теорему. У пятого постулата есть два отрицания: в одном из них говорится, что через точку, не лежащую на прямой, не проходит ни одной прямой, параллельной данной, в другом — что через нее проходит больше одной параллельной прямой. Как пятый постулат, так и его отрицания могут быть добавлены к оставшимся четырем, и во всех случаях получается непротиворечивое множество аксиом. Когда добавляется пятый постулат, получается, конечно же, геометрия Евклида; в оставшихся двух случаях возникают так называемые неевклидовы геометрии. Сегодня считается, что все эти геометрии одинаково справедливы; неевклидовы больше подходят для описания эйнштейновского пространства, искривленного присутствием масс, в то время как евклидова больше приспособлена к нашему восприятию повседневных явлений.

Это приравнивает математику к естественным наукам. В физике, например, любая теория является предварительной. То, что гравитационное притяжение между двумя телами уменьшается согласно квадрату расстояния, — это предварительное утверждение, поскольку мы никогда не сможем проверить силу гравитационного притяжения для всех пар тел, существующих во Вселенной, на всех возможных расстояниях. Утверждение истинно... пока не найдена ситуация, в которой оно не работает.

Нечто подобное происходит с семантическими доказательствами; мы можем быть уверены, что из Р выводится Q... пока не найдем мир, в котором Р будет истинным, a Q не работает. В программе Гильберта предполагалось избавление от этой неточности и предлагались методы доказательства, правильность которых можно было бы проверить раз и навсегда.

Повторим сказанное выше: любое истинное арифметическое высказывание может быть доказано на основе аксиом Пеано, если мы допустим семантические методы. Но мы никогда не сможем быть абсолютно уверены в том, что эти семантические методы верны. Мы можем иметь точные и достоверные методы рассуждения, как хотел Гильберт, но в этом случае не сможем доказать все истины. Мы можем узнать потенциально все арифметические истины, но без уверенности в том, что наши методы корректны. Надежность и достоверность либо возможность узнать все истины — одно или другое, но не оба варианта одновременно.

ЛЮДИ И КОМПЬЮТЕРЫ

Выше ли человеческий разум компьютера? Верно ли, что мы "думаем", в то время как компьютер просто "считает"? Или нет принципиальной разницы, и однажды технологический прогресс позволит нам создать искусственный интеллект, с которым мы встречаемся в научной фантастике?

Полемика на эту тему началась в середине XX века — с развитием первых электронных компьютеров. С тех пор были написаны десятки и даже сотни книг и статей с аргументами, опровержениями, дебатами и гипотезами на эту тему, но до сегодняшнего дня ответа так и нет.

Поделиться:
Популярные книги

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Особое назначение

Тесленок Кирилл Геннадьевич
2. Гарем вне закона
Фантастика:
фэнтези
6.89
рейтинг книги
Особое назначение

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат