Учебное пособие по курсу «Нейроинформатика»
Шрифт:
Если в результате усреднения показатель значимости должен давать величину, которую не превосходят показатели значимости по отдельным примерам (значимость этого параметра по отдельному примеру не больше чем Χp), то такой показатель вычисляется по следующей формуле:
Показатель значимости (4) хорошо зарекомендовал себя при использовании в работах группы НейроКомп.
Накопление
Все показатели значимости зависят от точки в пространстве параметров сети, в которой они вычислены, и могут сильно изменяться при переходе от одной точки к другой. Для показателей значимости, вычисленных с использованием градиента эта зависимость еще сильнее, поскольку при обучении по методу наискорейшего спуска (см. раздел «Метод наискорейшего спуска») в двух соседних точках пространства параметров, в которых вычислялся градиент, градиенты ортогональны. Для снятия зависимости от точки пространства используются показатели значимости, вычисленные в нескольких точках. Далее они усредняются по формулам аналогичным (3) и (4). Вопрос о выборе точек в пространстве параметров в которых вычислять показатели значимости обычно решается просто. В ходе нескольких шагов обучения по любому из градиентных методов при каждом вычислении градиента вычисляются и показатели значимости. Число шагов обучения, в ходе которых накапливаются показатели значимости, должно быть не слишком большим, поскольку при большом числе шагов обучения первые вычисленные показатели значимости теряют смысл, особенно при использовании усреднения по формуле (4).
Лекции 15, 16. Персептрон
Персептрон Розенблатта [146, 181] является исторически первой обучаемой нейронной сетью. Существует несколько версий персептрона. Рассмотрим классический персептрон — сеть с пороговыми нейронами и входными сигналами, равными нулю или единице. Будем использовать обозначения, приведенные в работе [146].
Определение персептрона
Персептрон должен решать задачу классификации на два класса по бинарным входным сигналам. Набор входных сигналов будем обозначать n-мерным вектором x. Все элементы вектора являются булевыми переменными (переменными принимающими значения «Истина» или «Ложь»). Однако иногда полезно оперировать числовыми значениями. Будем считать, что значению «ложь» соответствует числовое значение 0, а значению «Истина» соответствует 1.
Персептроном будем называть устройство, вычисляющее следующую функцию:
где αi — веса персептрона, θ — порог, φi — значения входных сигналов, скобки [] означают переход от булевых (логических) значений к числовым значениям по правилам описанным выше. В качестве входных сигналов персептрона могут выступать как входные сигналы всей сети (переменные x), так и выходные значения других персептронов. Добавив постоянный единичный входной сигнал φ0≡1 и положив α0=–θ, персептрон можно переписать в следующем виде:
Очевидно, что выражение (1) вычисляется одним нейроном с пороговым нелинейным преобразователем (см. главу «Описание нейронных сетей»). Каскад из нескольких слоев таких нейронов называют многослойным персептроном. Далее в этой главе будут рассмотрены некоторые свойства персептронов.
Обучение персептрона. Правило Хебба
Персептрон обучают по правилу Хебба. Предъявляем на вход персептрона один пример. Если выходной сигнал персептрона совпадает с правильным ответом, то никаких действий предпринимать не надо. В случае ошибки необходимо обучить персептрон правильно решать данный пример. Ошибки могут быть двух типов. Рассмотрим каждый из них.
Первый тип ошибки — на выходе персептрона 0, а правильный ответ — 1. Для того, чтобы персептрон (1) выдавал правильный ответ необходимо, чтобы сумма в правой части (1) стала больше. Поскольку переменные φi принимают значения 0 или 1, увеличение суммы может быть достигнуто за счет увеличения весов αi. Однако нет смысла увеличивать веса при переменных φi, которые равны нулю. Таким образом, следует увеличить веса αi при тех переменных , которые равны 1. Для закрепления единичных сигналов с φi, следует провести ту же процедуру и на всех остальных слоях.
Первое правило Хебба. Если на выходе персептрона получен 0, а правильный ответ равен 1, то необходимо увеличить веса связей между одновременно активными нейронами. При этом выходной персептрон считается активным. Входные сигналы считаются нейронами.
Второй тип ошибки — на выходе персептрона 1, а правильный ответ равен нулю. Для обучения правильному решению данного примера следует уменьшить сумму в правой части (1). Для этого необходимо уменьшить веса связей αi при тех переменных φi, которые равны 1 (поскольку нет смысла уменьшать веса связей при равных нулю переменных φi). Необходимо также провести эту процедуру для всех активных нейронов предыдущих слоев. В результате получаем второе правило Хебба.
Второе правило Хебба. Если на выходе персептрона получена 1, а правильный ответ равен 0, то необходимо уменьшить веса связей между одновременно активными нейронами.
Таким образом, процедура обучения сводится к последовательному перебору всех примеров обучающего множества с применением правил Хебба для обучения ошибочно решенных примеров. Если после очередного цикла предъявления всех примеров окажется, что все они решены правильно, то процедура обучения завершается.
Нерассмотренными осталось два вопроса. Первый — насколько надо увеличивать (уменьшать) веса связей при применении правила Хебба. Второй — о сходимости процедуры обучения. Ответы на первый из этих вопросов дан в следующем разделе. В работе [146] приведено доказательство следующих теорем:
Теорема о сходимости персептрона. Если существует вектор параметров α, при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба решение будет найдено за конечное число шагов.
Теорема о «зацикливании» персептрона. Если не существует вектора параметров α, при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба через конечное число шагов вектор весов начнет повторяться.
Доказательства этих теорем в данное учебное пособие не включены.
Целочисленность весов персептронов
В данном разделе будет доказана следующая теорема.