Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

Теорема. Любой персептрон (1) можно заменить другим персептроном того же вида с целыми весами связей.

Доказательство. Обозначим множество примеров одного класса (правильный ответ равен 0) через X0, а другого (правильный ответ равен 1) через X1. Вычислим максимальное и минимальное значения суммы в правой части (1):

Определим допуск ε как минимум из s0 и s1.

Положим δ=s/(m+1) , где m — число слагаемых в (1). Поскольку персептрон (1) решает поставленную задачу классификации и множество примеров в обучающей выборке конечно, то δ>0. Из теории чисел известна теорема о том, что любое действительное число можно сколь угодно точно приблизить рациональными числами. Заменим веса αi на рациональные числа так, чтобы выполнялись следующие неравенства |αi– αi'|<δ.

Из этих неравенств следует, что при использовании весов αi' персептрон будет работать с теми же результатами что и первоначальный персептрон. Действительно, если правильным ответом примера является 0, имеем

.

Подставив новые веса, получим:

Откуда следует необходимое неравенство

(2)

Аналогично, в случае правильного ответа равного 1, имеем

, откуда, подставив новые веса и порог получим:

Откуда следует выполнение неравенства

(3)

Неравенства (2) и (3) доказывают возможность замены всех весов и порога любого персептрона рациональными числами. Очевидно так же, что при умножении всех весов и порога на одно и тоже ненулевое число персептрон не изменится. Поскольку любое рациональное число можно представить в виде отношения целого числа к натуральному числу, получим

(4)

где αi″ — целые числа. Обозначим через r произведение всех знаменателей

. Умножим все веса и порог на r. Получим веса целочисленные αi'''=i''. Из (2), (3) и (4) получаем

что и завершает доказательство теоремы.

Поскольку из доказанной теоремы следует, что веса персептрона являются целыми числами, то вопрос о выборе шага при применении правила Хебба решается просто: веса и порог следует увеличивать (уменьшать) на 1.

Двуслойность персептрона

Как уже упоминалось ранее в данной главе возможно использование многослойных персептронов. Однако теоремы о сходимости и зацикливании

персептрона, приведенные выше верны только при обучении однослойного персептрона, или многослойного персептрона при условии, что обучаются только веса персептрона, стоящего в последнем слое сети. В случае произвольного многослойного персептрона они не работают. Следующий пример демонстрирует основную проблему, возникающую при обучении многослойных персептронов по правилу Хебба.

Пусть веса всех слоев персептрона в ходе обучения сформировались так, что все примеры обучающего множества, кроме первого, решаются правильно. При этом правильным ответом первого примера является 1. Все входные сигналы персептрона последнего слоя равны нулю. В этом случае первое правило Хебба не дает результата, поскольку все нейроны предпоследнего слоя не активны. Существует множество методов, как решать эту проблему. Однако все эти методы не являются регулярными и не гарантируют сходимость многослойного персептрона к решению даже при условии, что такое решение существует.

В действительности проблема настройки (обучения) многослойного персептрона решается следующей теоремой.

Теорема о двуслойности персептрона. Любой многослойный персептрон может быть представлен в виде двуслойного персептрона с необучаемыми весами первого слоя.

Для доказательства этой теоремы потребуется одна теорема из математической логики.

Теорема о дизъюнктивной нормальной форме. Любая булева функция булевых аргументов может быть представлена в виде дизъюнкции конъюнкций элементарных высказываний и отрицаний элементарных высказываний:

Напомним некоторые свойства дизъюнктивной нормальной формы.

Свойство 1. В каждый конъюнктивный член (слагаемое) входят все элементарные высказывания либо в виде самого высказывания, либо в виде его отрицания.

Свойство 2. При любых значениях элементарных высказываний в дизъюнктивной нормальной форме может быть истинным не более одного конъюнктивного члена (слагаемого).

Доказательство теоремы о двуслойности персептрона. Из теоремы о дизъюнктивной нормальной форме следует, что любой многослойный персептрон может быть представлен в следующем виде:

(5)

В силу второго свойства дизъюнктивной нормальной формы (5) можно переписать в виде

(6)

Переведем в арифметическую форму все слагаемые в (6). Конъюнкция заменяется умножением, а отрицание на разность:

. Произведя эту замену в (6) и приведя подобные члены получим:

(7)

где Il — множество индексов сомножителей в l-м слагаемом, αl — число, указывающее сколько раз такое слагаемое встретилось в (6) после замены и раскрытия скобок (число подобных слагаемых).

Заменим i-е слагаемое в (7) персептроном следующего вида:

(8)

Подставив (8) в (7) получим (1), то есть произвольный многослойный персептрон представлен в виде (1) с целочисленными коэффициентами. В качестве персептронов первого слоя используются персептроны вида (8) с необучаемыми весами. Теорема доказана.

Подводя итоги данной главы следует отметить следующие основные свойства персептронов:

1. Любой персептрон может содержать один или два слоя. В случае двухслойного персептрона веса первого слоя не обучаются.

Поделиться:
Популярные книги

Последний попаданец 8

Зубов Константин
8. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 8

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Странник

Седой Василий
4. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Странник

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V