Чтение онлайн

на главную

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

В домашнем задании I Всесоюзной олимпиады по нейрокомпьютингу, проходившей в мае 1991 года в городе Омске, в исследовательской задаче участникам было предложено определить, как нейронная сеть решает задачу распознавания пяти первых букв латинского алфавита (полный текст задания и наиболее интересные варианты решения приведены в [47]). Это была первая попытка извлечения алгоритма решения задачи из обученной нейронной сети.

В 1995 году была сформулирована идея логически прозрачных сетей, то есть сетей на основе структуры которых можно построить вербальное описание алгоритма получения ответа. Это достигается при помощи специальным образом построенной

процедуры контрастирования.

Построение логически прозрачных сетей

Рис. 2. Набор минимальных сетей для решения задачи о предсказании результатов выборов президента США. В рисунке использованы следующие обозначения: буквы «П» и «О» — обозначают вид ответа, выдаваемый нейроном: «П» — положительный сигнал означает победу правящей партии, а отрицательный — оппозиционной; «О» — положительный сигнал означает победу оппозиционной партии, а отрицательный — правящей;

Зададимся классом сетей, которые будем считать логически прозрачными (то есть такими, которые решают задачу понятным для нас способом, для которого легко сформулировать словесное описания в виде явного алгоритма). Например потребуем, чтобы все нейроны имели не более трех входных сигналов.

Зададимся нейронной сетью у которой все входные сигналы подаются на все нейроны входного слоя, а все нейроны каждого следующего слоя принимают выходные сигналы всех нейронов предыдущего слоя. Обучим сеть безошибочному решению задачи.

После этого будем производить контрастирование в несколько этапов. На первом этапе будем удалять только входные связи нейронов входного слоя. Если после этого у некоторых нейронов осталось больше трех входных сигналов, то увеличим число входных нейронов. Затем аналогичную процедуру выполним поочередно для всех остальных слоев. После завершения описанной процедуры будет получена логически прозрачная сеть. Можно произвести дополнительное контрастирование сети, чтобы получить минимальную сеть. На рис. 2 приведены восемь минимальных сетей. Если под логически прозрачными сетями понимать сети, у которых каждый нейрон имеет не более трех входов, то все сети кроме пятой и седьмой являются логически прозрачными. Пятая и седьмая сети демонстрируют тот факт, что минимальность сети не влечет за собой логической прозрачности.

Получение явных знаний

После получения логически прозрачной нейронной сети наступает этап построения вербального описания. Принцип построения вербального описания достаточно прост. Используемая терминология заимствована из медицины. Входные сигналы будем называть симптомами. Выходные сигналы нейронов первого слоя — синдромами первого уровня. Очевидно, что синдромы первого уровня строятся из симптомов. Выходные сигналы нейронов k — о слоя будем называть синдромами k — о уровня. Синдромы k — о первого уровня строятся из симптомов и синдромов более низких уровней. Синдром последнего уровня является ответом.

В качестве примера приведем интерпретацию алгоритма рассуждений, полученного по второй сети приведенной

на рис. 2. Постановка задачи: по ответам на 12 вопросов необходимо предсказать победу правящей или оппозиционной партии на выборах Президента США. Ниже приведен список вопросов.

Правящая партия была у власти более одного срока?

Правящая партия получила больше 50 % голосов на прошлых выборах?

В год выборов была активна третья партия?

Была серьезная конкуренция при выдвижении от правящей партии?

Кандидат от правящей партии был президентом в год выборов?

Год выборов был временем спада или депрессии?

Был ли рост среднего национального валового продукта на душу населения больше 2.1 %?

Произвел ли правящий президент существенные изменения в политике?

Во время правления были существенные социальные волнения?

Администрация правящей партии виновна в серьезной ошибке или скандале?

Кандидат от правящей партии — национальный герой?

Кандидат от оппозиционной партии — национальный герой?

Ответы на вопросы описывают ситуацию на момент, предшествующий выборам. Ответы кодировались следующим образом: «да» — единица, «нет» — минус единица. Отрицательный сигнал на выходе сети интерпретируется как предсказание победы правящей партии. В противном случае, ответом считается победа оппозиционной партии. Все нейроны реализовывали пороговую функцию, равную 1, если алгебраическая сумма входных сигналов нейрона больше либо равна 0, и –1 при сумме меньшей 0.

Проведем поэтапно построение вербального описания второй сети, приведенной на рис. 2. После автоматического построения вербального описания получим текст, приведенный на рис. 3. Заменим все симптомы на тексты соответствующих вопросов. Заменим формулировку восьмого вопроса на обратную. Подставим вместо Синдром1_Уровня2 название ответа сети при выходном сигнале 1. Текст, полученный в результате этих преобразований приведен на рис. 4.

Синдром1_Уровня1 равен 1, если выражение Симптом4 + Симптом6 — Симптом 8 больше либо равно нулю, и –1 — в противном случае.

Синдром2_Уровня1 равен 1, если выражение Симптом3 + Симптом4 + Симптом9 больше либо равно нулю, и –1 — в противном случае.

Синдром1_Уровня2 равен 1, если выражение Синдром1_Уровня1 + Синдром2_Уровня1 больше либо равно нулю, и –1 — в противном случае.

Рис. 3. Автоматически построенное вербальное описание

Синдром1_Уровня1 равен 1, если выражение + + больше либо равно нулю, и –1 — в противном случае.

Синдром2_Уровня1 равен 1, если выражение + + больше либо равно нулю, и –1 — в противном случае.

Оппозиционная партия победит, если выражение Синдром1_Уровня1 + Синдром2_Уровня1 больше либо равно нулю.

Рис. 4. Вербальное описание после элементарных преобразований

Заметим, что все три вопроса, ответы на которые формируют Синдром1_Уровня1, относятся к оценке качества правления действующего президента. Поскольку положительный ответ на любой из этих вопросов характеризует недостатки правления, то этот синдром можно назвать синдромом плохой политики. Аналогично, три вопроса, ответы на которые формируют Синдром2_Уровня1, относятся к характеристике политической стабильности. Этот синдром назовем синдромом политической нестабильности.

Поделиться:
Популярные книги

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Темный Лекарь 6

Токсик Саша
6. Темный Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 6

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Фараон

Распопов Дмитрий Викторович
1. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Фараон

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2