Чтение онлайн

на главную - закладки

Жанры

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Строгац Стивен

Шрифт:

Давайте назовем его большим квадратом, чтобы отличить от малого и среднего, которые можно построить на двух других сторонах:

Теперь теорема утверждает, что большой квадрат имеет такую же площадь, как малый и средний, вместе взятые.

На протяжении тысяч лет этот чудесный факт подтверждался следующей диаграммой, представляющей мнемоническую символьную схему танца квадратов:

Рассматривать

теорему с точки зрения площадей квадратов весьма приятно. Например, построив квадраты из множества маленьких крекеров45, вы можете сначала эмпирическим путем проверить верность теоремы, а затем съесть их. Или можно представить теорему как детскую головоломку, состоящую из пазлов различной формы и размера. Путем их перестановки теорему очень легко доказать.

Давайте вернемся к наклоненному квадрату, сидящему на гипотенузе.

Интуитивно это изображение должно немного смущать. Квадрат выглядит потенциально нестабильным: кажется, что он может свалиться или съехать вниз по наклонной плоскости. А тут еще явное самоуправство: каждая из его четырех сторон хочет соприкасаться с тре­угольником.

Чтобы усмирить все стороны квадрата, поместим еще три таких же треугольника на три его оставшиеся стороны так, чтобы получилась более устойчивая и симметричная картинка.

Теперь вспомним, что мы пытаемся доказать, что наклоненный белый квадрат (большой квадрат, все еще сидящий на гипотенузе) имеет такую же площадь, как малые и средние квадраты, вместе взятые. Но где же здесь другие квадраты? Чтобы найти их, надо переместить часть тре­угольников. Представьте картинку как изображение головоломки. В углах ее жесткой рамки вставлены четыре кусочка треугольной формы.

При такой интерпретации наклоненный квадрат будет свободным пространством в середине головоломки. Оставшуюся часть внутри рамки занимают пазлы. Попробуем их подвигать. Конечно, что бы мы ни делали, мы никогда не сможем изменить общую площадь свободного пространства внутри рамки — оно всегда будет областью, лежащей вне пазлов.

После небольшого мозгового штурма переставим пазлы таким образом:

Пустое пространство неожиданно принимает форму среднего и малого квадрата, которые мы ищем. А так как общая площадь свободного пространства неизменна, вот мы и доказали теорему Пифагора!

Это доказательство дает гораздо больше, чем уверенность в правильности теоремы, — оно ее разъясняет. И именно это делает его элегантным.

Для сравнения рассмотрим еще одно доказательство. Не менее знаменитое, и, пожалуй, самое простое из тех, где не используются площади.

Как и прежде, возьмем прямоугольный треугольник со сторонами a, b и гипотенузой с, как показано ниже на рисунке слева.

Далее (как что-то подсказывает нам по божественному вдохновению или благодаря собственной гениальности) проведем перпендикуляр вниз от гипотенузы к противоположному углу, как это сделано в правом треугольнике.

Эта маленькая умная «бестия» внутри исходного треугольника создает еще два меньших треугольника. Легко доказать, что все они подобны, то есть у них одинаковая форма, но различные размеры. Что, в свою очередь, означает, что длина их соответствующих сторон имеет подобные пропорции. Это можно записать в виде следующей системы равенств:

Мы также знаем, что

c = d + e,

поскольку построенный перпендикуляр делит гипотенузу c на два меньших отрезка d и e.

В этот момент не стыдно немного растеряться или просто не знать, что делать дальше. Мы в трясине из пяти представленных выше равенств и пытаемся привести их к равенству

a2 + b2 = c2.

Попробуйте сделать это за несколько минут. Вы обнаружите, что два равенства излишни. Следовательно, это неэлегантное доказательство. В изящном доказательстве не должно быть ничего лишнего. Конечно, все крепки задним умом, но ведь сначала мы ничего не знали об этих равенствах. Что, впрочем, не делает нашу мину при плохой игре лучше.

Тем не менее, манипулируя тремя «нелишними» равенствами, можно вывести требуемое соотношение. (См. пропущенные шаги доказательства в примечании 46 в конце книги.)

Согласны ли вы с тем, что с эстетической точки зрения этот вариант уступает первому? Конечно, он приводит к доказательству. Но кто пригласил на вечеринку всю эту алгебру? Ведь это геометрическая теорема.

Однако более серьезный недостаток последнего доказательства — непрозрачность. К тому времени, когда вы закончите упорно продираться сквозь его дебри, может быть, скрепя сердце вы и поверите в верность теоремы, но все еще в этом не убедитесь.

Но оставим в стороне доказательства. Что вообще дает теорема Пифагора? Она выявляет фундаментальную истину о природе пространства, показывая, что оно плоское, а не изогнутое. Например, для поверхности шара или тора (фигура, похожая на бублик) подобную теорему придется изменить. Эйнштейн столкнулся с этим в своей общей теории относительности (где гравитация рассматривается не как сила, а как проявление искривления пространства), как и Георг Риман[15] и другие ученые в условиях, когда только закладывались основы неевклидовой геометрии.

От Пифагора до Эйнштейна пролегла долгая дорога. Но по крайней мере она прямая — свою большую часть.

13. Кое-что из ничего

Любой курс математики содержит хотя бы одну заведомо трудную тему. В арифметике это деление в столбик. В алгебре — текстовые задачи. А в геометрии — доказательства.

Большинство учеников, изучающих геометрию, до этого никогда не сталкивались с доказательствами. И такая встреча может вызвать шок, поэтому здесь был бы уместен ярлычок со следующей надписью: «Доказательства способны вызвать головокружение или чрезмерную сонливость. Побочные эффекты от длительного воздействия доказательств могут включать в себя ночную потливость, приступы паники и в редких случаях эйфорию. Прежде чем приступать к их изучению, проконсультируйтесь с врачом».

Поделиться:
Популярные книги

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант