Удовольствие от X.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Учитывая нерегулярность интервалов между простыми числами, некоторые теоретики решили рассматривать их статистически, как членов некоей совокупности, вместо того чтобы искать их отличительные особенности. В частности, давайте посмотрим, как они распределяются среди обычных целых чисел. Сколько существует простых чисел, которые меньше либо равны 10? Или 100? Или произвольному числу N? Эта конструкция — прямой аналог статистического понятия функции распределения.
Представьте, что вы считаете простые числа, прогуливаясь между ними, подобно переписчику во время переписи населения. Изобразите их на оси x. Вы начинаете с числа 1 и идете вправо, подсчитывая простые числа, попадающиеся на пути. Ваш текущий результат будет выглядеть примерно так:
Значения на оси y показывают, сколько простых чисел вы насчитали, пока дошли до данного местоположения x.
Сравните эту картину с аналогичной картиной для нечетных чисел.
Здесь лестница идеально правильная, следуя линии с наклоном 1/2 — потому что интервал между соседними нечетными числами всегда равен 2.
Есть ли хоть какая-нибудь надежда найти что-нибудь подобное для простых чисел, несмотря на их блуждающий характер? Как это ни удивительно, есть. Ключ к разгадке в том, чтобы сосредоточиться на общей форме линии, а не на отдельных ступенях лестницы. Если мы уменьшим масштаб, из всей этой кажущейся неразберихи начнет вырисовываться кривая. Посмотрите на график функции нахождения всех простых чисел до 100.
Теперь мы меньше отвлекаемся на отдельные ступеньки. Кривая выглядит еще ровнее, если сосчитать все простые числа до миллиарда.
В противоположность первому впечатлению эта кривая не является прямой линией. По мере роста она слегка изгибается книзу. Такой изгиб означает, что простые числа становятся более редкими, изолированными и одинокими. Это то, что Джордано имел в виду, говоря про «одиночество простых чисел».
Такая разреженность кажется еще очевиднее, если посмотреть на данные «переписи» под другим углом. Помните, мы насчитали десять простых чисел среди первых тридцати целых чисел? Таким образом, там, где числовая прямая берет свое начало, примерно одно из трех чисел является целым, что составляет стабильные 33 %. Однако среди первой сотни чисел простых только двадцать пять. Их ряды сократились до одного из четырех, составляя уже 25 %, что вызывает беспокойство. А среди первого миллиарда чисел простых всего лишь 5 %.
И это суровый вестник наклоняющейся кривой. Простые числа похожи на вымирающее поколение. Они никогда не исчезают полностью — со времен Евклида известно, что они никогда не заканчиваются, но почти целиком растворяются в обычных целых числах.
Найдя функции, которые приблизительно соответствуют этой наклоняющейся кривой, теоретики чисел измерили, насколько одиноки простые числа, и выразили в виде формулы типичное расстояние между ними. Если N — большое число, то средний интервал между простыми числами, ближайшими к N, приблизительно равен lnN, то есть натуральному логарифму от N. (Натуральный логарифм ведет себя так же, как и обычный десятичный логарифм, изучаемый в средней школе, но в его основе лежит число e, а не 10. Он является натуральным в том смысле, что повсюду встречается в высшей математике, входя в окружение числа e. Подробнее о повсеместном использовании числа e читайте в главе 19.)
Хотя формула lnN для вычисления среднего промежутка между простыми числами не слишком хорошо работает для малых N, ее эффективность улучшается при приближении N к бесконечности, где ошибка формулы в процентном соотношении приближается к нулю. Чтобы получить представление об этих числах, допустим, что N = 1000. Выясняется, что существует 168 простых чисел меньше 1000 и что средний промежуток между ними в этой части числовой прямой составляет 1000/68, или примерно 5,9. Для сравнения, согласно формуле средний интервал должен равняться ln(1000) 6,9, что превышает реальное значение примерно на 17 %. Но если мы пойдем дальше, скажем, для N = 1 000 000 000, то реальный и вычисленный по формуле интервалы составят 19,7 и 20,7 соответственно, и разность между ними будет примерно 5 %.
Формула lnN, где N стремится к бесконечности, сегодня известна как теорема простых чисел [145] . Она впервые была записана (но не опубликована) Карлом Гауссом [146] в 1792 году, когда ему было всего пятнадцать лет. (Видите, на что способен ребенок, лишенный развлечений в виде игровой приставки?)
Что же касается других молодых людей, о которых шла речь в этой главе, Маттиа и Аличе, то, я надеюсь, вы оценили, насколько это захватывающе, что два простых числа-близнеца [147]
145
Помимо указанных выше книг Дербишира, Рокмора и Дю Сотоя, в интернете можно найти множество источников о теореме простых чисел, например страницу Chris K. Caldwell How many primes are there? , страницу MathWorld Prime number theorem и страницу «Википедии» Prime number theorem .
146
История о том, как Гаусс в возрасте пятнадцати лет доказал теорему о простых числах, рассказана в книге Derbyshire, Prime Obsession, а также в работе L. J. Goldstein, A history of the prime number theorem, American Mathematical Monthly, Vol. 80, № 6 (1973), рр. 599–615. Гауссу удалось не столько доказать теорему, сколько угадать ее благодаря наблюдениям за таблицами простых чисел, которые он вычислил вручную для собственного развлечения. Первое доказательство теоремы было опубликовано Жаком Адамаром и Шарлем де ля Валле Пуссеном в 1896 году, примерно век спустя, причем каждый из них работал над ней независимо.
147
Как могут существовать простые числа-близнецы при большом N, если рассматривать их в свете теории простых чисел? Согласно теореме, lnN — это всего лишь средний промежуток. Однако он может колебаться, а поскольку существует бесконечное множество простых чисел, некоторым из них удается преодолеть ограничение и создать счастливую пару. Другими словами, даже если большинство простых чисел не обнаружат другие простые числа среди своих соседей намного ближе, чем на расстоянии lnN, все же некоторым это удастся.
Для тех, кто желает узнать, как математика управляет «очень маленькими промежутками между простыми числами», эта тема красиво и четко изложена в статье Эндрю Гранвиля, посвященной аналитической теории чисел, см. T. Gowers, The Princeton Companion to Mathematics (Princeton University Press, 2008), рр. 332–348.
В интернете также есть прекрасная статья Терри Тао, которая позволяет проникнуть в мир простых чисел-близнецов. В частности, в ней рассказывается, как они распределяются, а также дается ответ на вопрос, почему математики считают, что их существует бесконечное множество. Затем приводится подробное доказательство его знаменитой теоремы (совместно с Беном Грином) о том, что простые числа могут образовывать арифметические прогрессии произвольной длины. См. T. Tao, Structure and randomness in the prime numbers, http://terrytao.wordpress.com/2008/01/07/ams-lecture-structure-and-randomness-in-the-prime-numbers/.
Подробнее о простых числах-близнецах см.http://mathworld.wolfram.com/TwinPrimeConjecture.html.
Но все-таки некоторые пары побеждают нечетные числа. Компьютеры нашли простые числа-близнецы в невероятно отдаленных областях числовой прямой. Где-то вдали уютно устроилась самая большая известная пара двух чисел, каждое из которых состоит из 100 355 десятичных цифр.
Согласно гипотезе о простых числах, подобные пары будут появляться всегда.
Так не попробовать ли нам поискать поблизости от этих чисел еще какую-нибудь парочку простых чисел [148] , чтобы сообразить с ними на четверых? Удачных поисков!
148
Здесь я привожу свои соображения и не пытаюсь дать окончательный ответ на вопрос о расстоянии между двумя последовательными парами простых чисел-близнецов. Возможно, где-нибудь очень далеко на числовой прямой существуют две пары простых чисел-близнецов, которые находятся очень близко друг к другу. Введение в эти вопросы см. I. Peterson, Prime twins (June 4, 2001), http://www.maa.org/mathland/mathtrek_6_4_01.html.
В любом случае метафора о загадочных парах простых чисел-близнецов не осталась незамеченной в Голливуде. Вы можете посмотреть фильм под названием The Mirror Has Two Faces («У зеркала два лица»), в котором снимаются Барбра Стрейзанд и Джефф Бриджес. Он красивый, но не приспособленный к жизни в обществе профессор математики. Она профессор на кафедре английской литературы, смелая, энергичная, но привязанная к дому женщина (или, по крайней мере, таковой кажется), живущая вместе с матерью и неуравновешенной сестрой. В конце концов этим двум профессорам удается встретиться. Но когда их разговор за ужином заходит о танцах (что ему совсем не нравится), мужчина внезапно меняет тему и рассказывает о простых числах-близнецах. Она мгновенно понимает его мысль и спрашивает: «Что случится, если досчитать до миллиона? Там еще останутся такие пары?» Он почти падает со стула, восклицая: «Не могу поверить, что вы думали об этом! Именно это предстоит доказать в гипотезе о простых числах». Далее по фильму их отношения развиваются, и на день рождения она дарит ему пару запонок, на которых изображены простые числа.
26. Групповое мышление
Мы с женой спим совершенно по-разному, и это видно по нашему матрасу. Она подминает под себя подушки, всю ночь ворочается, и матрас под ней практически не вдавлен. А я сплю на спине, в позе мумии, отчего на моей стороне кровати образуется впадина.
Производители кроватей рекомендуют периодически переворачивать матрас, вероятно, имея в виду таких людей, как я. Но как это лучше сделать? Как именно его надо переворачивать, чтобы он изнашивался максимально равномерно?