Удовольствие от X.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
А теперь итоги. Эта схема показывает, как добиться наиболее равномерного изнашивания матраса. Любая стратегия, примененная для всех четырех состояний, будет периодически работать. Например, чередование действий R и H удобно, а поскольку у нас есть возможность миновать шаг V, то нам не требуется много физических усилий. Чтобы напомнить о необходимости выполнять эти действия, некоторые производители дают такой совет: «весной — поворот, осенью — переворот».
Группа чисел, свойственная матрасу, иногда всплывает в самых неожиданных местах, начиная от симметрии молекул воды и заканчивая принципами действия пары электрических переключателей. В этом и состоит прелесть теории групп. Благодаря ей становится очевидным единство вещей, которые в других случаях кажутся не связанными между собой — как в анекдоте о том, как физик Ричард Фейнман получил отсрочку от призыва в армию [153] .
Армейский
153
Историю о Фейнмане и психиатре см. R. P. Feynman, Surely You’re Joking, Mr. Feynman! (W. W. Norton and Company, 1985), р. 158; J. Gleick, Genius (Random House, 1993), р. 223.
Фейнман не играл в игры разума, а просто решил немного пошутить в духе теории групп. Если рассмотреть все возможные способы вытягивания рук, а также различные переходы между ними, то стрелка образует такую же модель, как и в группе чисел матраса!
Однако все это слишком усложняет наши отношения с матрасами. Возможно, настоящий урок здесь тот, который вам и так известен: если вас что-нибудь беспокоит, ложитесь спать, и все пройдет.
27. Кручение и склеивание
В нашей местной начальной школе существует традиция приглашать в класс родителей для разговоров с детьми. Благодаря этому ребята узнают о различных профессиях и многих вещах, которым их не учат в школе.
Когда пришла моя очередь, я явился в первый класс, где училась моя дочь, с сумкой, наполненной лентами Мебиуса [154] . Накануне вечером мы с женой нарезали длинные полоски из бумаги и скрутили каждый из них на пол-оборота, вот так:
154
Если вас интересует искусство, лимерики, патенты, уловки ораторов и серьезная математика, как-то связанная с лентами Мебиуса, тогда все это вы найдете в увлекательной книге Cliff Pickover, The Mobius Strip (Basic Books, 2006). Ранее об этих чудесах писалось в статье M. Gardner, The world of the Mobius strip: Endless, edgeless, and one-sided, Scientific American, Vol. 219, № 6 (December 1968).
а затем склеили концы полосок так, чтобы получились ленты Мебиуса.
Для этого увлекательного занятия с формами для шестилетних детей требуются лишь ножницы, карандаши, скотч и немного любознательности. [155]
Когда мы с женой раздали ученикам ленты Мебиуса и указанные выше принадлежности, учитель спросил у детей, каким, по их мнению, предметом они сейчас занимаются. Один мальчик поднял руку и сказал: «Не уверен, каким именно, но точно знаю, что не языкознанием».
155
Пошаговые инструкции с фотографиями для некоторых занятий, описанных в этой главе, можно найти в статье How to explore a Mobius strip наДжулиан Флерон предлагает множество других идей: бумажные гирлянды, сердечки и звездочки, для создания которых используются свойства ленты Мебиуса. См. Recycling Mobius, http://artofmathematics.wsc.ma.edu/sculpture/workinprogress/Mobius1206.pdf.
Кроме того, интересные бумажные модели описаны в классической книге S. Barr, Experiments in Topology (Crowell, 1964).
Конечно, учитель ожидал от него ответа «искусство» или, скорее, «математика». Однако лучшим ответом стала бы «топология» [156] . (В Итаке кто-нибудь из первоклассников обязательно бы такое выдал. Однако в том году ученик, чьи родители занимались топологией, учился в другом классе.)
Итак, что же такое топология? Это энергично развивающаяся отрасль современной математики, ответвление геометрии, но только более свободное. В топологии две формы рассматриваются как одна, если одна из них непрерывно переходит в другую в результате изгибов, кручения, растягивания или любой другой непрерывной деформации, но при этом ее нельзя разрывать или прокалывать. В отличие от жестких объектов в геометрии, объекты в топологии ведут себя так, как если бы были бесконечно гибкими или сделанными из идеальной резины.
156
Основы
Прим. ред.: Популярные книги по топологии для начинающих: Болтянский В. Г., Ефремович В. А. Наглядная топология. М.: Наука, 1982; Васильев В. А. Введение в топологию. М.: ФАЗИС, 1997; Косневски Ч. Начальный курс алгебраической топологии. М.: Мир, 1983; Милнор Дж., Уоллес А. Дифференциальная топология. Начальный курс. М.: Мир, 1972; Прасолов В. В. Наглядная топология. М.: МЦНМО, 1995; Стюарт Я. Топология. // Квант. 1992. № 7.
Топология фокусирует внимание на самых глубинных свойствах формы, тех, которые не изменяются после непрерывной деформации. Например, две полоски резины, одна в форме квадрата, а вторая — круга, топологически неразличимы. Здесь не имеет значения, что у квадрата четыре угла и четыре прямые стороны. Эти свойства несущественны. При непрерывной деформации от них можно избавиться, округлив углы квадрата и изогнув его стороны в дуги.
Но есть одна вещь, от которой подобная деформация избавиться не может — это свойственная кругу и квадрату замкнутость линии границы [157] . Обе фигуры ограничены замкнутыми кривыми. Это их общая топологическая сущность.
157
Принимая во внимание, что окружность и квадрат представляют собой топологически эквивалентные кривые, возникает вопрос: какие кривые будут топологически отличными друг от друга? Самый простой пример — отрезок прямой. Чтобы доказать это, предположим, что вы движетесь в одном направлении по окружности, квадрату или любой другой замкнутой кривой. Вы всегда будете возвращаться в исходную точку, что неверно при движении по отрезку прямой. Поскольку это свойство неизменно для всех преобразований, при которых сохраняется топология объекта (то есть при непрерывных деформациях, когда непрерывны и обратные деформации), и различается для замкнутых кривых и отрезков прямой, делаем вывод о том, что замкнутые кривые и отрезки прямой являются топологически различными объектами.
Подобно этому сущность ленты Мебиуса заключается в ее скрученности на пол-оборота, обеспечивающей форме ее особые свойства. Самое замечательное, что лента Мебиуса имеет только одну сторону и только один край. Другими словами, ее лицевая и обратная поверхности в действительности являются одним и тем же, так же как и ее верхний и нижний край. (Чтобы проверить это, просто ведите пальцем по середине ленты, пока не вернетесь в исходное положение.) Здесь благодаря полуобороту верхний и нижний край бумаги объединились в одну большую непрерывную кривую. Подобным образом объединились и обе стороны. Когда лента склеена, эти ее свойства фиксируются. Готовую ленту Мебиуса можно растягивать и скручивать, уже ничто не изменит того, что у нее одна сторона и один край.
Предложив первоклассникам исследовать вытекающие из этого удивительные свойства ленты Мебиуса, я хотел им продемонстрировать, насколько это интересно и увлекательно.
Сначала я попросил их взять карандаш и аккуратно провести линию посередине ленты. И они сосредоточенно стали рисовать нечто наподобие показанного здесь пунктира.
Сделав один оборот, они остановились, озадаченно переглядываясь. Потом стали шумно обсуждать, почему их линии не замкнулись, как ожидалось. Карандашная линия не вернулась в исходную точку, а оказалась на «другой» стороне поверхности. Это и был первый сюрприз: необходимо дважды пройти по ленте Мебиуса, чтобы добраться до исходной точки.
Внезапно один мальчик расплакался. Когда он обнаружил, что его карандаш не вернулся в исходное положение, он подумал, что сделал что-то не так. Сколько мы его ни убеждали, что он ничего не напутал и именно так и должно получиться, надо было просто пройти еще один круг, оказалось, уже поздно. Валяясь на полу, ребенок безутешно рыдал.
С некоторой опаской я предложил классу сделать еще одно дело — взять ножницы и разрезать ленту по всей длине по средней линии. «Как думаете, что выйдет в результате?» — спросил я у них.