Удовольствие от X.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
К счастью, сто лет назад аналитики точно определили, что вызывает артефакты Гиббса (см. примечание [179] ), и научили нас, как преодолеть эти явления, или, по крайней мере, распознать их в случае появления.
30. Отель Гильберта
В феврале 2010 года я получил электронное письмо от женщины по имени Ким Форбс. Ее шестилетний сын Бен задал ей математический вопрос, на который она не смогла ответить, и она надеялась, что я смогу помочь.
179
Аналитики XIX века нашли математическое обоснование феномена Гиббса. Для функции (или в настоящее время изображения), отображающей края или другие устранимые точки с простым разрывом, было доказано, что частичные суммы синусоидальных волн сходятся в этих точках к пределу поточечно, но неравномерно. Поточечная сходимость означает, что в любой определенной точке х при добавлении большего числа членов ряда значения частичных сумм приближаются сколь угодно близко к предельному значению.
В этом случае неравномерная сходимость обусловлена «патологией» знакочередующегося гармонического ряда, чьи члены появляются в виде коэффициентов Фурье для пилообразной волны. Как уже обсуждалось выше, знакочередующиеся гармонические ряды сходятся, но только благодаря грандиозному сокращению членов с противоположными знаками. Если бы ряд состоял исключительно из положительных (абсолютных) значений его членов, то он был бы расходящимся, а сумма стремилась бы к бесконечности. Вот почему говорят, что знакочередующийся гармонический ряд сходится условно, но не абсолютно. Затем такая форма сходимости заражает соответствующий ряд Фурье и приводит к тому, что он сходится неравномерно; тут и возникает феномен Гиббса с его насмешливо поднятыми у края пальцами.
В противоположность этому, когда коэффициенты рядов Фурье абсолютно сходятся, связанные с ними ряды Фурье равномерно сходятся к исходной функции. И феномен Гиббса не возникает. Для получения дополнительной информации см.и http://en.wikipedia.org/wiki/Gibbs_phenomenon.
Мораль наших рассуждений такова: нужно быть осторожными с условно сходящимися рядами. У них сходимость все же недостаточно хорошая. Чтобы бесконечный ряд во всех отношениях вел себя как конечная сумма, он должен быть более жестко ограничен, чего не может обеспечить условная сходимость. Требование абсолютной сходимости приводит к тому, что мы интуитивно ожидаем как для исходного ряда, так и для связанного с ним ряда Фурье.
Сегодня 100-й день его пребывания в школе. Сын был очень взволнован и рассказал мне все, что знает о числе 100, включая то, что оно четное. Затем он сказал, что 101 нечетное число, а 1 000 000 — четное и т. д. А потом остановился и спросил: «Бесконечность — четная или нечетная?»
Я объяснил Ким, что бесконечность не может быть ни четной, ни нечетной. Это не число в обычном смысле, и оно не подчиняется правилам арифметики. Например, я писал: «Если бы бесконечность была нечетным числом, при умножении на себя она стала бы четным числом. И обе были бы бесконечностями! Так что в целом понятие четности и нечетности не имеет смысла для бесконечности».
Ким ответила:
Спасибо. Бен удовлетворен таким объяснением. Ему понравилась идея, что бесконечность достаточно велика, чтобы быть одновременно как четной, так и нечетной.
Несмотря на возникшее искажение (бесконечность не нечетная и не четная, а ни то и ни другое), толкование Бена близко к истине. Бесконечность бывает ошеломляющей.
Некоторые из ее странных сторон впервые были освещены в конце XIX века в новаторской работе Георга Кантора [180] по теории множеств [181] . Кантор особенно интересовался бесконечными множествами чисел и точек, подобных множеству {1, 2, 3, 4….} натуральных чисел и множеству точек на прямой. Он определил строгий способ сравнить разные бесконечные множества и обнаружил шокирующее свойство бесконечностей. Оказывается, одни бесконечности больше, чем другие.
180
Более подробную информацию о Канторе, в том числе о математических, философских и богословских спорах, связанных с его работой, см. J. W. Dauben, Georg Cantor (Princeton University Press, 1990).
Прим. ред.: О Георге Канторе и его научном наследии см. Катасонов В. Н. Боровшийся с бесконечным: философско-религиозные аспекты генезиса теории множеств Г. Кантора. М.: Мартис, 1999; Пуркет В., Ильгаудс Х. И. Георг Кантор / Пер. с нем. Н. М. Флайшера. Харьков: Основа, 1991.
181
Если вы еще не читали, рекомендую прочесть удивительный бестселлер «Логикомикс», потрясающе творческий и «графический» роман о теории множеств, логике, бесконечности, безумии и стремлении к математической истине: A. Doxiadis and С. Н. Papadimitriou, Logicomix (Bloomsbury, 2009). Главный герой — Бертран Рассел, но появление Кантора, Гильберта, Пуанкаре и многих других незабываемо.
В то время теория Кантора вызвала не только неприятие, но и возмущение. Анри Пуанкаре, один из ведущих математиков того времени, назвал ее «болезнью». Однако другой гигант той эпохи, Давид Гильберт [182] , увидел в ней долгосрочный вклад в науку и провозгласил: «Никто не может изгнать нас из рая, созданного Кантором».
Моя задача — дать вам некоторое представление об этом рае. Но прежде чем начать, позвольте, следуя подходу, введенному самим Гильбертом, непосредственно рассмотреть множества чисел или точек. Он живо передал странности и уникальность теории Кантора на примере притчи о «Гранд-отеле», который в настоящее время называется отелем Гильберта [183] .
182
Классическая биография Давида Гильберта — трогательный и неакадемичный рассказ о его жизни, работе и эпохе, см. C. Reid, Hilbert (Springer, 1996). Вклад Гильберта в математику слишком велик, чтобы перечислять здесь все достижения, но, вероятно, величайшее из них — это коллекция из двадцати трех тогда еще не решенных задач, которые, по мнению ученого, могли бы сформировать ход развития математики в ХХ веке. Продолжение истории о значимости задач, предложенных Гильбертом, и людях, которые решили кое-какие из них, см. B. H. Yandell, The Honors Class (A K Peters, 2002). Некоторые из этих проблем до сих пор остаются неразрешенными.
Прим. ред.: Русский перевод первого издания: Констанс Рид. Гильберт. М.: Наука, 1977.
Прим. ред.: О творчестве Гильберта см.: Вейль Г. Давид Гильберт и его математическое творчество. // Математическое мышление. М.: Наука, 1989. По проблемам Гильберта см.: Проблемы Гильберта. Сборник под ред. П. С. Александрова. М.: Наука, 1969.
183
Притча Гильберта о бесконечном отеле приведена в незабываемом шедевре George Gamow’s One Two Three ... Infinity (Dover, 1988), р. 17. Гамов также хорошо объясняет понятия исчислимых и неисчислимых множеств и связанные с ними идеи о бесконечности.
Авторы математической беллетристики часто раскрывали комедийные и драматические стороны отеля Гильберта. Например, см. S. Lem, The extraordinary hotel or the thousand and first journey of Ion the Quiet, (Wiley, 1999) и I. Stewart, Professor Stewart’s Cabinet of Mathematical Curiosities (Basic Books, 2009). Детская книга на эту же тему: I. Ekeland, The Cat in Numberland (Cricket Books, 2006).
Этот отель всегда заполнен, но в нем неизменно остается один свободный номер.
В отеле Гильберта не просто сотни номеров, в нем их бесчисленное множество. Всякий раз, когда прибывает новый постоялец, менеджер переселяет обитателя номера 1 в номер 2; обитателя номера 2 в номер 3 и т. д. Это освобождает номер 1 для нового постояльца и обеспечивает номерами всех остальных (правда, создавая им определенные неудобства при переезде).
Теперь предположим, что приехало бесконечно много новых, причем чем-то раздраженных постояльцев. Это не проблема. Невозмутимый менеджер перемещает обитателя номера 1 в номер 2, из номера 2 в номер 4, из номера 3 в номер 6 и т. д. Этот фокус с удвоением освобождает все нечетные номера (их бесконечное множество) для новых постояльцев.
Вечером того же дня бесконечная вереница автобусов с грохотом подъезжает к стойке регистрации. Их бесконечно много, и, что еще хуже, каждый заполнен бесконечным множеством ворчащих людей, требующих, чтобы отель соответствовал своему девизу: «В отеле Гильберта всегда есть свободные номера».
Менеджер раньше уже сталкивался с такой проблемой и запросто решает ее.
Сначала он проводит трюк удвоения. Это позволяет заселить новых постояльцев в четные номера и освободить все нечетные — хорошее начало, потому что теперь он имеет бесконечное число свободных номеров.
Но достаточно ли этого? Хватит ли нечетных номеров для размещения орд новых постояльцев? Кажется маловероятным, поскольку есть нечто вроде квадратной бесконечности людей, скандалящих из-за этих номеров. (Почему квадратной? Потому что каждый из бесконечного числа автобусов привез бесконечное число пассажиров. Общее количество людей составляет бесконечность, умноженную на бесконечность, чтобы это ни значило).
Вот где логика при работе с бесконечностью становится очень странной.
Чтобы понять, как менеджер собирается решать последнюю задачу, следует визуализировать всех людей, которых он должен поселить.
Конечно, мы не можем показать здесь буквально всех, так как в этом случае диаграмма должна быть бесконечной в обоих направлениях. Но окончательный вариант картинки будет соответствующим. Дело в том, что любой конкретный пассажир автобуса (скажем, ваша тетя Инесс из Луисвилля) обязательно появится где-то на диаграмме, когда мы включим в нее достаточное количество строк и столбцов. В этом смысле каждый пассажир каждого автобуса учтен. Вы называете его имя, и он (или она) обязательно отобразится на некотором конечном количестве шагов к востоку и югу от северо-западного угла картинки.
Задача менеджера — на основании этой диаграммы выработать систему. Он должен построить схему распределения номеров между постояльцами таким образом, чтобы каждый получил свой номер после того, как будет заселено конечное число других людей.
К сожалению, предыдущий менеджер не понял этого, и начался хаос. Когда приезжала очередная колонна автобусов, он так волновался, пытаясь быстро расселить пассажиров первого автобуса, что у него не оставалось времени на яростно кричащих пассажиров других автобусов. На диаграмме ниже проиллюстрирована эта недальновидная стратегия, путь которой всегда соответствовал бы пути на восток вдоль строки 1.
Однако новый менеджер все взял под контроль. Вместо движения вдоль первой строки (обслуживая только первый автобус) он двигался из угла по зигзагообразной схеме, как показано ниже.
Он начинает с первой пассажирки автобуса с номером 1 и дает ей первую пустую комнату. Второй и третий свободные номера займут второй пассажир из первого автобуса и первый пассажир из второго автобуса. Оба находятся на второй диагонали от угла диаграммы. Заселив их, менеджер переходит к третьей диагонали и раздает набор ключей от номеров первому пассажиру из третьего автобуса, второму пассажиру из второго автобуса и третьему пассажиру из первого автобуса.