Успенский пишет о Колмогорове
Шрифт:
В контрасте с этой концепцией, интуиционистский математический мир принципиально незавершён, он развивается в результате творческой активности субъекта. Образно говоря, акт Творения математического мира передан от Бога к человеку, точнее к идеализированному человеческому существу, живущему и творящему во времени. От активности и умений такого творческого субъекта и зависит характер соответствующего математического мира. Что же в таком случае выражает интуиционистская логика, эта своего рода конституция интуиционистской математики? Предложенная Колмогоровым концепция исходит из того, что объектами интуиционистской математики, а, следовательно, и логики являются не абсолютные истины (как в традиционном случае), а задачи (проблемы). Логические операторы формируют новые проблемы из уже поставленных, а сами формулы интуиционистской логики выражают умение решить те или иные составные задачи. Таким образом, интуиционистская логика оказывается логикой умений. Закон исключённого третьего теряет при таком подходе свой универсальный характер. Принятие его означало бы постулирование умения решить в каждый момент времени любую задачу, что вряд ли убедительно. Интересной стороной интерпретации Колмогорова является её нейтральность: интуиционистская логика может теперь быть объяснена исследователю, не понимающему
Исследования Колмогорова по интерпретации интуиционистской логики развивались параллельно с усилиями выдающего голландского логика, ученика и последователя Брауэра А. Гейтинга. Многие идеи этих учёных оказались очень близкими. Однако в логической литературе до недавнего времени имя Колмогорова в этой связи почти не упоминалось. Мне кажется очень важным, что, восстанавливая историческую справедливость, два выдающихся представителя голландской школы, ученики Гейтинга Д. ван Дален и А. Трулстра в своей недавней великолепной двухтомной монографии [13] ввели в употребление термин «интерпретация Брауэра-Гейтинга-Колмогорова». С именем Трулстры связана и недавняя публикация писем Колмогорова Гейтингу ([14–15]). Письма эти были обнаружены Трулстрой в архивах А. Гейтинга. Профессор Трулстра, с которым я состоял в течение ряда лет в дружеской переписке, любезно прислал мне копии этих бесценных исторических документов, относящихся к началу 30-х годов. Естественно, было бы крайне интересно найти письма Гейтинга к Колмогорову в бумагах последнего. К сожалению, если я не ошибаюсь, это оказалось невозможным. Тем временем В.А. Успенский предложил опубликовать русские переводы писем Колмогорова (оригиналы написаны на немецком и французском языках) в Успехах Математических Наук, что и было сделано с любезного согласия профессора Трулстры. Корреспонденция между Колмогоровым и Гейтингом, даже доступная только частично, проливает новый свет на раннюю историю интуиционизма и на личности обоих выдающихся учёных.
[13]
Dalen D. van, Troelstra A. S. Constructivity in Mathematics. An Introduction. Vol.1–2, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1988.
Как это случилось и с работой 1925 года, новая работа Колмогорова по интуиционистской логике осталась малоизвестной. По-видимому, Клини не знал об этой работе, когда он писал свою знаменитую статью о реализуемости [16] . Семантика реализуемости, оказавшаяся столь плодотворной, перекликается с ранними идеями Колмогорова из [10] .
Вообще есть какая-то тайна в судьбе этих двух работ. Несмотря на всемирную репутацию их автора, они остались практически неизвестными за пределами России. Как уже говорилось, многие результаты были переоткрыты другими исследователями. Даже и сейчас, как я мог убедиться после своего переезда в США, значение и само существование этих работ неизвестно многим первоклассным экспертам на Западе. Можно надеяться, что статья Успенского, опубликованная по-английски и в одном из самых читаемых логических журналов, поможет исправить эту достойную сожаления ситуацию [xviii] .
[16]
Kleene S.C. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic, v.10, 109–124, 1945.
[10]
Колмогоров А.Н. Zur Deutung der intuitionistischen Logic. Mathematische Zeitschrift, v. 35, 58–65, 1932.
[18]
В связи с подобными проблемами часто приходится слышать о языковом барьере. Боюсь, однако, что дело обстоит сложнее. Во-первых, скажем, Колмогорову не легче читать по-английски, чем любому его англоязычному коллеге по-русски. Во-вторых, статья 32-го года написана по-немецки, а статья 25-го года уже довольно давно (1967 г.) опубликована в английском переводе профессором Хейенортом [17]. В третьих, трудно не вспомнить об аналогичной судьбе выдаюшейся работы П.С. Новикова [18], опубликованной в 1943 году по-английски. И это не помогло - работа эта по сей день остаётся практически неизвестной за пределами (бывшего) Советского Союза. Не мне, однако, искать разгадку описанного феномена.
В связи с публикацией английского перевода статьи 25-го года приведём короткое, но выразительное письмо Колмогорова (копия приводимого письма получена, благодаря любезности Профессора И. Анелиса, из Jean van Heijenoort papers, 1946-1983, Archives of American Mathematics, University Archives, University of Texas at Austin).
Москва В 234 Professor John van Heijenoort
Университет 100 Washington Square
Зона Л. кв. 10 New York 3 N.Y. USA
А.Н.Колмогоров
Глубокоуважаемый Коллега!
Моя работа, опубликованная в 1925 году, может рассматриваться как общее достояние специалистов по математической логике, и я ничего не имею против ее перевода. Рассчитываю, впрочем, на Вашу любезность в смысле присылки мне экземпляра подготовляемой Вами книги по её выходе в свет.
С искренним уважением
12 ноября 1963 Ваш А. Колмогоров
О невероятной жизни самого ван Хейенорта можно прочесть в яркой книге Аниты Феферман [19].
5. Дальнейшая часть обзора Успенского посвящена трудам Колмогорова по общей теории алгоритмов и алгоритмическим основаниям теории вероятностей. Следует сказать, что В.А. Успенский принял самое живое участие в этой деятельности А.Н. Колмогорова. Широко известная ныне общая концепция алгоритма, задуманная Колмогоровым и реализованная им совместно с Успенским, по-видимому даёт наиболее общее точное описание интуитивных алгоритмов. Алгоритмы, подпадающие под эту концепцию, обычно называют алгоритмами Колмогорова-Успенского. Я специально подчёркиваю это обстоятельство, не отмеченное В.А. по понятным причинам. Определение Колмогорова-Успенского оказалось очень плодотворным, как с точки зрения приложений (теория сложности), так и с точки зрения оснований математики. Если в других классических точных определениях (машина Тьюринга, рекурсивные функции, нормальные алгорифмы Маркова и т.д.) ставилась задача воспроизвести работу любого интуитивного математического алгоритма посредством некоторого алгоритма из данного точного класса (возможность всегда достичь этой цели и провозглашалась Тезисом Чёрча, тезисом Тьюринга, принципом нормализации и т.д.), то определение Колмогорова-Успенского пытается непосредственно представить наиболее общие мыслимые математические алгоритмы. Анализ природы финитарных процессов, приводящий к упомянутому определению, представляет большой методологический интерес. Некоторые авторы полагают даже, что этот анализ доставляет легитимное доказательство Тезиса Чёрча (см. интересную работу Мендельсона [20] ).
[20]
Mendelson E. Second Thoughts about Church's Thesis and Mathematical Proofs. The Journal of Philosophy, v.87 No.5, 225–233, 1990.
Несомненный исторический интерес представляют замечания Успенского о семинаре «Рекурсивная Арифметика», которым Колмогоров пригласил его соруководить в 1953/1954 учебном году. Историкам математики будет небесполезно проследить связь между трудами по дескриптивной теории множеств московской школы Лузина и изучением рекурсивно-перечислимых множеств в этом семинаре [xix] . (Если я не ошибаюсь, аналогичные события происходили примерно в то же время и на семинарах П.С. Новикова.) На этом же семинаре Колмогоровым были высказаны основные идеи будущей теории нумераций, впервые развитые в точной форме В.А. Успенским.
[19]
Связь этих двух теорий особенно ясно ощущается в иерархиях множеств в теории рекурсивных функций (иерархия Клини-Мостовского и т.д.).
Ярко представлен Успенским и один из последних творческих подвигов А.Н. Колмогорова – создание им и очередным поколением его учеников основ алгоритмической теории информации и теории вероятностей. Эти труды А.Н. Колмогорова ведут непосредственно в сегодняшний день. Соответствующие теории ещё не обрели завершенные формы, продолжается поиск основных концепций, оттачивается интуиция. Драматические начальные шаги этого процесса, протекавшие в 60-е годы, во всей их живой полноте представлены Успенским. Я могу только дополнить его описание несколькими наблюдениями и воспоминаниями, поскольку я тоже был непосредственным свидетелем происходящего.
Мне не довелось быть непосредственным учеником Колмогорова, и мои личные встречи с ним были немногочисленны. Но каждая навсегда врезалась в память. Первая такая встреча произошла в середине 60-х годов, когда я был аспирантом на кафедре математической логики. С.А. Яновская планировала организовать заседание Математического Общества по программным методам обучения с участием ведущих математиков, педагогов и психологов. Написав записку А.Н., она попросила меня отвезти это послание на дачу в Болшево-Комаровке, вблизи Москвы, которую Колмогоров в течение многих лет разделял с П.С. Александровым. Дача эта, конечно же, была знаменита в математических кругах. Дело было зимним холодным вечером, и я нашёл не особенно приметный дом не без труда.
Колмогоров вышел ко мне в лыжном костюме, как всегда, голова его была чуть-чуть наклонена вперёд. Обращение его с любым собеседником, независимо от возраста и ранга, всегда было предельно корректным. Вот и сейчас, увидев меня первый раз, он протянул руку, пригласил сесть и погреться. Прочитав записку, А.Н. сказал, что, к сожалению, не сможет сделать доклад, о чём его просила Яновская, так как не чувствует себя экспертом в данной области. Он рекомендовал обратиться к Б.В. Гнеденко, который, если мне не изменяет память, и сделал требуемый доклад. Из самого заседания математического общества мне запомнился лишь не лишённый комизма эпизод. Один из выступавших, энтузиаст-психолог увлечённо излагал своё необычайное и, несомненно, окончательное решение проблемы обучения детей математике.
– Как, например, учить сложению? – риторически спросил он, – мало кто знает, что такое сложение! – И, посмотрев в зал, заполненный математиками, добавил
– Вы не знаете, что такое сложение!
И здесь не выдержал А.Г. Курош.
– МЫ знаем, что такое сложение! – возмущённо возразил он.
Вообще подготовка этого заседания оказалась крайне благотворной для меня. Я ближе познакомился с С.А. Яновской, с её учеником философом Б.В. Бирюковым, от которого я впервые услышал о замечательном учёном и замечательной личности академике, адмирале А.И. Берге (много лет спустя Аксель Иванович энергично вмешался, когда моя монография застряла в недрах Редакционно-Издательского Совета Издательства Наука). В те дни мне довелось провести несколько часов в доме матери Б.В. Бирюкова в одном из исчезнувших теперь Таганских переулков. Как жаль, что я тогда же не записал её рассказ, какой трагический, какой подлинный документ о жизни в коммунистическом государстве мог бы получиться! С её недавней кончиной ещё один непосредственный свидетель трагических событий, способный описать их, ушёл навсегда...
Мои дальнейшие персональные встречи с А.Н. Колмогоровым почти всегда были связаны с представлением моих работ в Доклады АН СССР. Запомнился следующий случай. Я получил представлявшиеся мне интересными результаты по некоторым довольно экзотическим системам вычислимых действительных чисел. Как обычно в таких случаях, Марков позвонил Колмогорову, и тот попросил принести ему работу для представления. А.Н. встретил меня у дверей своей квартиры в одном из крыльев главного здания МГУ, нашёл уголок на заваленном бумагами огромном письменном столе, просмотрел рукопись, написал своё представление и попросил оставить ему копию статьи. Я поблагодарил А.Н., протянул ему копию манускрипта и собрался уходить. Но А.Н. остановил меня и сделал несколько (к большой моей радости вполне положительных) замечаний о моей работе. Замечания эти не были простой любезностью, из них я с изумлением убедился, что А.Н. знал содержание моих предыдущих работ и вполне ясно представлял характер полученных мною результатов. Надо сказать, что большинство моих коллег, целиком посвятивших себя математической логике, не имели никакого представления о тематике, над которой я тогда работал.