Устройства импульсного электропитания для альтернативных энергоисточников
Шрифт:
В схемах, где возбуждение популярной микросхемы управления TL494 производится первичным импульсом, напряжение питания этой микросхемы и промежуточного усилителя снимается с выхода выпрямительной схемы канала +12 В. Каскады фильтрации данного напряжения аналогичны приведенным ранее.
Амплитуда импульсов на выходе выпрямителя составляет 60 В. Уровень отфильтрованного постоянного напряжения непосредственно на ШИМ-преобразователе зависит от длительности выпрямленного импульса и промежутка между импульсами так называемой «мертвой зоны». Диапазон изменения постоянного напряжения в данном случае составляет примерно от +25 до +30 В.
1.2.
Энергетические характеристики силовых элементов импульсного преобразователя были выбраны, исходя из предположения, что в установившемся режиме работы на предельной мощности они не превысят предельно допустимых норм для данного прибора.
Наиболее критичными являются режимы работы силовых транзисторов.
Полумостовые импульсные преобразователи характеризуются тем, что максимальное напряжение на силовых транзисторах этой схемы равно напряжению питания каскада. Броски напряжения, возникающие в моменты коммутации транзисторов, устраняются включением защитных диодов между коллектором и эмиттером каждого силового транзистора. Такими диодами на принципиальной схеме, приведенной на рис. 1.3, являются D6 и D7.
Существующие нормы рекомендуют применять полупроводниковые приборы в цепях, предельные режимы эксплуатации которых имеют уровень 0,8 от максимального значения тока или напряжения. При выполнении этого требования, как правило, изготовители элементной базы гарантируют надежную работу приборов.
Наиболее критичным для работы силовых элементов (транзисторов) в усилителе мощности оказывается неконтролируемое возрастание нагрузки по вторичным каналам напряжения, которое превышает установленный предельный уровень.
Увеличение нагрузки приводит к росту тока, коммутируемого транзисторами полумостового усилителя мощности.
Процесс неконтролируемого нарастания тока и превышения максимально допустимых значений может быть только следствием неисправности и возникновения экстренной ситуации в нагрузочной цепи. Иногда это может быть обусловлено неправильным использованием преобразователя в режимах, не предусмотренных техническими характеристиками.
Для предотвращения повреждения элементов импульсного преобразователя в схему вводятся каскады, предназначенные для отключения формирователя ШИМ-последовательностей. После остановки работы ШИМ-регулятора прекращается подача управляющих импульсов в силовые цепи. Оба транзистора полумоста «замирают» в закрытом состоянии, их коммутация прекращается.
Защита источника питания от перегрузки по вторичным цепям выполняется остановкой преобразователя. Прекращение коммутации силовых транзисторов вызывает понижение напряжения питания на ШИМ-каскаде.
Если не происходит выгорание сетевого предохранителя, то единственным каскадом, остающимся под напряжением питания, будет усилитель мощности.
Все выходные цепи имеют гальваническую развязку от первичной сети, поэтому в отсутствие импульсных колебаний на входе усилителя мощности напряжения на них будут отсутствовать.
1.2.1. Практические примеры схемотехники защиты ИИП
Существуют различные схемы построения каскадов защиты. Общим для всех схем является то, что их действие вызывает остановку функционирования маломощной схемы ШИМ-регулятора при возникновении перегрузки в выходных цепях. Перегрузка источника питания по каждому
По мере возрастания нагрузки по этим каналам происходит заметное увеличение длительности импульсов управления усилителем мощности. Комплексная система защиты производит слежение за их длительностью.
В качестве датчика контроля длительности управляющих импульсов в схеме, приведенной на рис. 2.2, используется узел, основу которого составляют трансформатор ТЗ и схема на диодах D9 и D10. Первичная обмотка W3 трансформатора ТЗ включена в первичную цепь. Через нее протекает такой же импульсный ток, как и через первичную обмотку силового трансформатора. Вторичные обмотки W1 и W2 этого трансформатора присоединены к анодам диодов D9 и D10, катоды которых подключены к общему проводу вторичной цепи питания. Этими диодами образован двухполупериодный выпрямитель. Вторичные обмотки соединены последовательно.
С точки соединения обмоток снимается сигнальное импульсное напряжение отрицательной полярности, которое сглаживается на фильтре, образованном элементами R19 и С7. Через балансный резистор R12 происходит частичный разряд конденсатора С7 при текущей работе и полный разряд при отключении источника питания от сети.
В процессе работы преобразователя, когда происходит нормальная коммутация силовых транзисторов, на отрицательной обкладке конденсатора С7 накапливается заряд, пропорциональный длительности импульсов. Напряжение с этой обкладки через резистор R14 подается на вывод IC 1/15. Туда же через резистор R13 подводится напряжение вторичного канала источника питания +5 В.
Согласно функциональной схеме, представленной на рис. 1.5, вывод IC 1/15 является инвертирующим входом внутреннего усилителя ошибки DA4 ШИМ-преобразователя. Выходы внутренних усилителей DA3 и DA4 микросхемы TL494 объединены по схеме монтажного ИЛИ через диоды развязки. Неинвертирующий вход внутреннего усилителя DA4 (вывод IC 1/16) подсоединен к общему проводу.
Внутренний усилитель DA4 включен в режиме компаратора напряжения. Компаратор производит сравнение потенциалов на своих входах. В зависимости от их соотношения выходное напряжение принимает значения низкого или высокого уровня, быстро минуя промежуточные стадии переключения. Пока напряжение на выводе IC1/15 положительное, выход усилителя DA4 имеет низкий уровень напряжения, которым устанавливается обратное смещение на диоде D2. В таком режиме этот усилитель не оказывает влияния на работу ШИМ-компаратора DA2 и усилителя ошибки, выполненного на усилителе DA3.
Рис. 1.5. Функциональная блок-схема
Когда напряжение на входе IC 1/15 понижается до отрицательного уровня, происходит изменение состояния выхода DA4. На нем устанавливается положительное напряжение, практически равное по величине напряжению питания этого усилителя.
Происходит открывание диода D2, и положительное напряжение поступает на неинвертирующий вход ШИМ-компаратора DA2. Этим положительным напряжением запирается диод D1.