Чтение онлайн

на главную

Жанры

Шрифт:

Тот, кто прыгал с парашютом, не забудет мгновений, когда пролетаешь первые метры после отделения от самолета. Рука уже выдернула кольцо, и вот-вот прозвучит чудесной музыкой шелест раскрывающегося шелкового купола. Затем последует толчок, и начнется медленный спуск с заоблачных высот, когда сердце переполняется восторгом и с уст сама собой рвется песня… А пока — лишь свист рассекаемого воздуха, который неожиданно становится таким неподатливым, таким упругим.

Впрочем, нет нужды быть парашютистом, чтобы ощутить эту необычную упругость воздуха. Подобное ощущение знакомо лыжнику, стремительно спускающемуся с высокой горы, мотоциклисту, мчащемуся по гладкому шоссе, или спортсмену, прыгающему с вышки в воду. Да и каждый может

испытать его — достаточно высунуть руку из быстро идущего поезда или автомобиля или пойти навстречу сильному ветру.

Та же сила, что бьет в этих случаях с размаху в грудь и лицо, но лишь многократно увеличенная, опрокидывает железнодорожные вагоны и вырывает с корнем деревья во время урагана.

Эта сила — скоростной напор воздушного потока, остановленного неожиданным препятствием. Вся кинетическая, скоростная энергия воздуха затрачивается в данном случае на его сжатие, на повышение давления. Повышенное, избыточное давление воздуха и создает силу, ощущаемую нами при быстром движении и оказывающуюся такой страшной при ураганах.

Но ведь реактивный самолет движется в воздухе со скоростью, во много раз большей, чем скорость самого сильного урагана. С какой же силой должен обрушиваться встречный поток воздуха на поверхность самолета! 8*

Тормозится воздух и перед всасывающим отверстием турбореактивного двигателя, установленного на летящем с большой дозвуковой скоростью самолете. Ведь на двигатель встречный поток устремляется со скоростью, близкой к скорости звука; внутри же двигателя эта скорость уменьшается раза в три-четыре, а то и больше. Мы не видим этого процесса торможения, ибо воздух прозрачен. Но если как- нибудь окрасить воздух, то можно было бы заметить перед всасывающим отверстием двигателя огромную воронку, расширяющуюся по мере приближения к двигателю. Воздух, текущий через эту воронку, тормозится, его скорость уменьшается, а давление возрастает.

Простой расчет показывает, что даже во время самого страшного урагана скоростной напор ветра не превышает… сотых долей атмосферы. На первый взгляд, это даже несколько неожиданно: такие огромные разрушения — и столь незначительное избыточное давление, в десятки и сотни раз меньше нормального. Во всасывающем отверстии двигателя давление воздуха оказывается в десятки раз большим — ведь скоростной напор порождается кинетической энергией встречного воздушного потока: когда скорость увеличивается вдвое, избыточное давление возрастает вчетверо.

И все же пока скорость полета остается дозвуковой, величина этого избыточного давления невелика сравнительно со сжатием воздуха в компрессоре двигателя. Давление воздуха перед компрессором в результате скоростного напора повышается всего на несколько десятых килограмма на квадратный сантиметр. При дозвуковом полете скоростной напор лишь помогает сжимать воздух. Следует иметь в виду, что всякое увеличение давления перед компрессором сказывается в гораздо более сильном увеличении давления за ним — ведь давление в компрессоре возрастает в несколько раз 9*. Вот почему, кстати сказать, форсажная камера и становится все более выгодной по мере роста скорости полета — давление в ней при этом возрастает.

Но когда скорость полета превышает скорость звука, то влияние скоростного напора на работу двигателя, постепенно увеличиваясь, может стать уже и качественно иным. На самом деле, при скорости полета, в два раза превосходящей скорость звука, давление перед компрессором теоретически может превосходить атмосферное в 7 раз, при трехкратной скорости звука — в 36 раз, а при четырехкратной — даже в 150 раз!

Совершенно очевидно, что при этих условиях отпадает надобность в компрессоре для сжатия воздуха, поступающего в двигатель. Но если не нужен компрессор; то не нужна и турбина с ее перегруженными лопатками. Во что же превращается в этом случае

весь двигатель? В одну лишь камеру сгорания, имеющую спереди диффузор для торможения и сжатия набегающего потока воздуха, а сзади — реактивное сопло для разгона газов и увеличения скорости их истечения. Подобный двигатель носит название прямоточного воздушно-реактивного двигателя.

Таково важнейшее следствие влияния растущей скорости полета на работу воздушно-реактивного двигателя самолета. Это следствие, на первый взгляд, несколько неожиданно. На самом деле, борьба за непрерывный рост скорости полета до настоящего времени неизменно приводила к постепенному усложнению турбореактивного двигателя. Достаточно вспомнить хотя бы о той же проблеме повышения температуры газов перед турбиной. И вдруг такое принципиальное, огромное упрощение, как устранение наиболее сложных частей двигателя — компрессора и турбины! Так идет развитие авиации — не плавно, не постепенно, а скачками, когда накапливающиеся постепенные изменения вызывают резкий переход на качественно иную ступень развития. Так было, например, когда поршневой двигатель уступил место турбореактивному; так будет с турбореактивным двигателем, когда при значительно возросших скоростях полета он уступит место прямоточному.

Простота прямоточного воздушно-реактивного двигателя объясняет, почему его часто называют «летающей топкой». Ведь этот двигатель действительно представляет собой как бы одну топку, в которую непрерывно втекает широкой рекой воздух и из которой так же непрерывно вытекают раскаленные газы. И такая примитивная по идее топка, бессмысленная, если она неподвижна, превращается в совершеннейший реактивный двигатель, когда она мчится в воздухе со скоростью, в 3–4 раза превосходящей скорость звука. При этих условиях прямоточный двигатель не имеет себе равных во всем многочисленном семействе реактивных двигателей: он способен развивать наибольшую тягу на килограмм своего веса и вместе с тем меньше всех остальных расходовать топлива на килограмм развиваемой тяги. Расчет показывает, например, что прямоточный двигатель диаметром в один метр способен при скорости 4000–5300 километров в час развивать тягу в 150 и более тонн 10* расходуя в 8 раз меньше топлива, чем жидкостный ракетный двигатель, о котором речь будет идти ниже (это единственный двигатель другой конструкции, способный обеспечить полет с указанной выше скоростью). Неудивительно, что прямоточный двигатель по праву считают двигателем завтрашнего дня.

Конечно, прямоточный двигатель прост лишь по своей принципиальной схеме. В действительности он гораздо сложнее, а рабочий процесс в нем ставит труднейшие задачи перед учеными и конструкторами. К числу этих проблем относятся, например, торможение в диффузоре двигателя стремительно набегающего на него сверхзвукового потока воздуха, сгорание топлива, впрыскиваемого в несущийся с огромной, «сверхураганной» скоростью воздушный поток, регулирование двигателя и многие другие.

И все же главная слабость прямоточного двигателя не в этих проблемах — они хоть и сложны, но их можно решить, — а во взлете самолета.

Как бы ни старались ученые и инженеры, они не смогут заставить прямоточный двигатель осуществить взлет самолета: ведь этот двигатель способен развивать тягу только в полете с большой скоростью. Поэтому на самолете с прямоточным двигателем обязательно нужно иметь какой-нибудь другой двигатель; с его помощью самолет взлетит и наберет скорость, при которой уже целесообразна работа основного, прямоточного двигателя. Можно, конечно, как это иногда предлагается, установить самолет с прямоточным двигателем на другом, тяжелом самолете с двигателями иного типа, например турбореактивными. Этот второй самолет — «носитель» или «матка» — поднимет его в воздух. Только там, при большой скорости полета, будет запущен прямоточный двигатель, и вскоре «носитель» останется далеко позади.

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Ненастоящий герой. Том 1

N&K@
1. Ненастоящий герой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Ненастоящий герой. Том 1

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Измена. Испорченная свадьба

Данич Дина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Измена. Испорченная свадьба

Приручитель женщин-монстров. Том 4

Дорничев Дмитрий
4. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 4

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12