Чтение онлайн

на главную

Жанры

Шрифт:

На этом расстанемся с Риманом.

Сейчас основная моя задача — воздерживаться по мере сил от восторженных восклицаний.

Действительно, вряд ли во всей математике отыщешь еще десяток идей, равных по своей красоте доказательству непротиворечивости геометрии Лобачевского.

Все построено на том, что математику совершенно безразлично, что именно скрывается под его Основными Понятиями. Лишь бы удовлетворялись аксиомы.

До поры до времени геометрия не более чем логическая игра. «Прямая», «точка», «плоскость», «движение» — фигурки в этой игре;

и единственное, что знает о них математик, — это его аксиомы — правила игры с этими фигурами.

На этом этапе геометрия, вообще говоря, столь же бесполезна для физика, как шахматы или домино. Лишь тогда, когда он — физик — экспериментально установит, что его реальные прямые, точки и т. д. очень точно описываются математическими абстракциями, лишь тогда, когда он увидит, что аксиомы математики действительно описывают поведение его вполне реальных прямых, точек, плоскостей… Лишь тогда геометрия превращается в одну из глав физики — науки, исследующей окружающий нас мир. До этого момента геометрия — логическая игра.

Но как раз такая неожиданная позиция дает возможность доказать непротиворечивость геометрии Лобачевского.

Задача выглядит так.

Есть две игры: геометрия Евклида и геометрия Лобачевского.

Попробуем доказать, что если в правилах одной из них скрыто внутреннее противоречие, то оно непременно есть и в правилах другой.

Правила игры — напомним еще раз — это список аксиом.

Как видите, мы несколько изменили постановку вопроса.

Мы понимаем, что прямо, в лоб, строго решить проблему непротиворечивости — задача безнадежная.

Сколько бы сотен миллионов теорем мы ни доказали, не может быть уверенности, что в следующей теореме мы не наткнемся на противоречие.

А теперь мы хотим доказать: если противоречива геометрия Лобачевского, то непременно противоречива и геометрия Евклида.

Однако на первый взгляд и здесь не видно ясного пути.

Правила игры (аксиомы) различны. Правда, отличаются геометрии лишь одной аксиомой — аксиомой о параллельных, но в принципе дела это не меняет.

Игры разные. И совершенно неясно, как вообще можно перекинуть связующий мост между ними.

Тем не менее это оказалось возможно.

Боюсь, что различные аналогии, призванные пояснять, лишь затуманят суть, и потому прямо перейду к доказательству. Автор его — один из крупнейших математиков XIX века Феликс Клейн. О нем, конечно, стоило бы рассказать. Был он интересный и сложный человек, но, к сожалению, нам невозможно слишком увлекаться историей. Я хочу только привести один поразивший меня в свое время факт.

Клейн прожил долгую жизнь. И если взять только те его работы, что были им выполнены после 30–35 лет, то по любым меркам — перед нами великолепный разносторонний ученый. Активный, тонкий, плодовитый математик, блестящий знаток прошлого своей науки, один из лучших педагогов за всю историю математики.

Сам он жестко и безапелляционно написал, что после 30 лет в результате нервного переутомления, вызванного исследованием одной математической проблемы

он никогда больше не был способен к творческой деятельности. Он не кокетничал. Он действительно думал именно так. И признаюсь, меня подкупают люди такого склада. Другой вопрос — облегчает ли им жизнь такая беспощадность к себе?

Итак, доказательство.

Сначала мы «играем» в евклидову геометрию. Рассмотрим обычный круг. Проведем в нем хорду. Возьмем какую-нибудь точку, не лежащую на этой хорде. Ясно, что через эту точку можно провести бесчисленное число других хорд, не пересекающих нашу. Это все хорды, уместившиеся между двумя пересекающими нашу в ее крайних точках; там, где она пересекается с окружностью.

Пока все до наивности ясно. Неясно только, какое отношение этот круг может иметь к геометрии Лобачевского.

И сейчас произойдет удивительное.

Идея Клейна в том, что он превращает этот тривиальный круг в модель плоскости Лобачевского.

Вот как это происходит.

Повторим старое заклинание.

Математику все равно, что такое его Основные Понятия. Лишь бы удовлетворялись аксиомы.

И начинается двойная игра.

Мы называем:

круг — плоскостью Лобачевского;

любую хорду в круге — прямой Лобачевского;

точку — точкой Лобачевского.

Естественно, мы должны добавить новые понятия: «соотношения», «лежать между», «принадлежать» и «движение».

Добавим их. А после этого попробуем сыграть с этими евклидовыми элементами в «геометрию Лобачевского».

Чтобы проделать это, надо будет обратиться к списку аксиом и проверить, удовлетворяют ли наши элементы аксиомам геометрии Лобачевского.

Сравнительно легко можно убедиться, что с большинством аксиом все в порядке.

Все великолепно и с аксиомой о параллельных — единственной, отличающей геометрию Лобачевского от геометрии Евклида: «Через данную точку к данной «прямой» можно провести бесчисленное множество непересекающих ее «прямых».

Пока из чувства перестраховки я ставлю кавычки у слова «прямая». Но стоит доказать, что для наших понятий выполняются все аксиомы геометрии Лобачевского, — и кавычки можно будет смело убрать.

Не забывайте только — идет двойная игра. Мы все время должны «переводить» с языка евклидовой геометрии на язык геометрии Лобачевского. И наоборот.

С понятиями «принадлежать» и «лежать между» все хорошо. На обоих языках они одинаковы. Трудности начинаются, когда мы переходим к движению.

Понятие «движение» должно удовлетворить всей группе аксиом движения.

Мы заявили, что наш круг — плоскость Лобачевского. Очень хорошо. Мы можем определить движение в этой плоскости Лобачевского. Это движение обязано удовлетворять всем положенным ему аксиомам. (Их стоит сейчас посмотреть в приложении к третьей главе.)

Поделиться:
Популярные книги

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Сердце дракона. Том 18. Часть 2

Клеванский Кирилл Сергеевич
18. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.40
рейтинг книги
Сердце дракона. Том 18. Часть 2

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2