В поисках частицы Бога, или Охота на бозон Хиггса
Шрифт:
Протокол заседания, проходившего тем майским днем, написан черными чернилами аккуратным почерком на уже пожелтевших страницах тетради в бордовом переплете, которая хранится в архивах Королевского колледжа в Лондоне. Запись начинается с последовательного изложения аргументов Хиггса, а продолжается описанием выедступлений присутствовавших на заседании преподавателей и студентов. “Этот вопрос вызвал острую дискуссию”, — отмечено в протоколе.
Вопрос Хиггса знаком философам. На заре становления современной науки французский философ XVII века Рене Декарт размышлял над двумя серьезными проблемами: что человек способен познать и как он это может сделать. Декарт предположил, что есть злой демон, пытающийся
Если бы Декарт на этом остановился, он бы оставил нам в наследство мрачный мир, пронизанный сомнениями и одиночеством. Но он пошел дальше, рассмотрев проблему с другой стороны. Что, если есть доброжелательный Бог, предположил он, который дал нам чувства, позволяющие правильно воспринимать действительность, и мозги, дабы правильно сопоставлять факты? Тогда на картина мира правильна. Если Бог хороший мы можем доверять нашим чувствам и радоваться что мир, который мы видим, и есть мир, который существует.
Хиггс не рассматривал Бога в качестве способа разрешения парадокса. В своем докладе он сказал что ему намного легче было бы поверить в научный результат, если бы множество людей сделали один и тот же эксперимент независимо друг от друга и получили бы одинаковый ответ. Друг Хиггса Майкл Фишер, присутствовавший на докладе, во время дискуссии поднял руку и заявил, что будет искать ответы собственными силами в окружающем его мире и сам сможет их найти. “Я должен полагаться на свои чувства!” — сказал он. Обсуждение зашло в тупик, и был объявлен перерыв.
Максвелловское общество было так названо в честь Джеймса Клерка Максвелла, который создал теорию света, работая в Королевском колледже примерно за восемьдесят лет до того, как там оказался Хиггс. Общество собиралось в комнате номер 2С, первой в Великобритании комнате, освещенной газовой лампой. В этой же самой комнате в 1946 году прямо во время лекции был арестован известным физик-ядерщик Алан Нанн Мэй — за шпионаж в пользу русских. За месяц до бомбардировки Хиросимы и Нагасаки Нанн Мэй переправил небольшое количество оружейного урана советскому агенту, а позже отправил ему подробную информацию о бомбардировке Японии. Он получил за это 200 долларов и бутылку виски.
Обычно в Максвелловском обществе выступали приглашенные докладчики. Артур Чарльз Кларк, недавний выпускник колледжа, рассказывал о межпланетных путешествиях 60. Сэр Эдвард Эпплтон, получивший Нобелевскую премию за открытие верхнего слоя атмосферы — ионосферы — с помощью отражения от нее радиоволн, обсуждал шансы на получение сигналов от внеземных цивилизаций. Чарльз Колсон, первый профессор физик-теоретик колледжа, рассказывая о будущем физики, утверждал, что ученые всё поймут лет через десять или двадцать, если только не появится нечто неожиданное, например телепатия. Неудивительно, что для студента Хиггса эти собрания были невероятно важны как необходимое дополнение к основному курсу.
Когда Хиггсу исполнилось 17 лет, он поступил в Лондонскую городскую школу, расположенную вблизи собора Святого Павла, чтобы в течение года плотно позаниматься математикой. Хиггс обнаружил, что он был там единственным учеником, не одержимым мечтой попасть в Оксфорд или Кембридж. В семье Хиггса существовало устойчивое предубеждение в отношении Оксбриджа (так в Англии называли Оксфорд и Кембридж вместе), и оно передалось Питеру. “Мой отец считал, что слишком многие отправляются в Оксбридж,
Хиггс хотел жить дома, пока не получит степень. Имперский колледж в Южном Кенсингтоне он исключил из-за того, что в нем обучение ограничивалось только научными дисциплинами. Хиггс подал документы на физический факультет Университетского колледжа в Блумсбери, а затем и в Королевский колледж, занимавший несколько внушительных зданий на Стрэнде. Не получив ответа из Университетского колледжа, он принял предложение Королевского колледжа.
Питер понимал, что таланта к исследовательской, экспериментальной работе у него нет. Довольно быстро это поняли и его коллеги. Он мог бороться с установкой целую вечность, но все его усилия оставались безуспешными — ни один прибор в его руках работать не желал. В одном опыте Хиггса в тупик поставил барометр, который ни за что не хотел давать показания, пока техник не пожалел Питера и не предложил вынуть резиновую пробку, засунутую в головку барометра. Позже Хиггс попытался повторить классический эксперимент Милликена 1909 года, в котором электрическое поле заставляло заряженные капли масла парить в воздухе, но не смог заставить остановиться ни одну чертову каплю.
В тот же год, когда Хиггс начал учиться в Королевском колледже, Фримен Дайсон осуществил свою мечту. Он устал от послевоенной депрессивной Британии и страстно желал окунуться в атмосферу бурного американского оптимизма. В возрасте 23 лет он прилетел в Нью-Йорк и устроился на работу в Корнеллский государственный университет в группу Ханса Бете, возглавлявшего ранее теоретический отдел Манхэттенского проекта.
В Корнелле Дайсон сразу погрузился в труднейшую проблему, которая угрожала сильно затормозить развитие квантовой физики. Для ее решения необходимо было, в частности, создать теорию поглощения и излучения света атомами и электронами. Эта задача была лишь частью другой огромной проблемы — описания всех различных видов частиц и их взаимодействий с позиции квантовой механики. В центре её была трудность, возникшая в квантовой теории поля, которую физики разработали для описания элементарных частиц. Дело было в том, что квантовая электродинамика, теория, описывающая взаимодействия электронов и фотонов, при определенных обстоятельствах приводила к парадоксу (проблема бесконечностей).
Роберт Оппенгеймер обратил внимание на этот парадокс, когда ему было 26 лет, в 1930 году, но вмешалась война, и проблема была отложена в сторону. Тогда Оппенгеймер с помощью квантовой теории поля попытался разобраться, что происходит, когда электрон испускает частицу света и быстро поглощает ее снова. Это квантовый эквивалент бросания теннисного мяча в воздух, когда он на обратном пути вниз опять попадает в ваши руки. Вы тратите энергию, когда бросаете мяч, но получаете ее обратно, когда ловите его.
Количество энергии, которую человек затрачивает и соответственно получает, когда бросает и ловит теннисный мяч, слишком мало, чтобы причинить ему какой-либо вред, а вот излучение и поглощение частиц света способно повредить электрону. Природа не накладывает верхнего предела на количество энергии, которой может обладать частица света, к тому же электроны постоянно могут излучать бесчисленное множество “виртуальных фотонов”. Оппенгеймер посчитал, и оказалось, что эти вылетающие фотоны приводят к бесконечным изменениям энергии атома. А поскольку такое невозможно, следовательно, с теорией что-то не так. Она прекрасно работала как грубый ориентир, но не более того.