В поисках памяти: Возникновение новой науки о человеческой психике
Шрифт:
Когда нейрон пребывает в состоянии покоя, потенциал-зависимые каналы закрыты. Когда стимулятор повышает мембранный потенциал до порогового уровня, например с –70 до –55 милливольт, потенциал-зависимые натриевые каналы открываются, и ионы натрия устремляются внутрь клетки, вызывая краткое, но резкое увеличение количества положительных зарядов и поднимая мембранный потенциал до +40 милливольт. В ответ на это изменение мембранного потенциала натриевые каналы, открывшись на некоторое время, закрываются, а потенциал-зависимые калиевые каналы ненадолго открываются,
5–5. Модель потенциала действия Ходжкина – Хаксли, полученная благодаря использованию внутриклеточного электрода. Приток положительно заряженных ионов натрия (Na+) меняет суммарный заряд внутри клетки и вызывает нарастание потенциала действия. Почти сразу открываются и калиевые каналы, и ионы калия (K+) вытекают из клетки, обеспечивая реполяризацию мембраны и возвращая мембранный потенциал на исходный уровень.
Каждый потенциал действия оставляет клетку с чем должно быть, количеством натрия внутри и с количеством калия снаружи. Ходжкин выяснил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия – в клетку. В конечном итоге исходные градиенты концентраций натрия и калия восстанавливаются.
После того как потенциал действия возникает на одном участке аксона, создаваемый при этом ток возбуждает соседние участки, вызывая потенциал действия и на них. Происходящая в результате цепная реакция обеспечивает передачу потенциала действия по всей длине аксона от места, где он был вызван первоначально, до окончаний аксона, подходящих к другому нейрону (или мышечной клетке). Этим способом от одного конца нейрона к другому передаются сигналы, обеспечивающие зрительные ощущения, движения, мысли и воспоминания.
За свою концепцию, теперь известную как ионная гипотеза, в 1963 году Ходжкин и Хаксли вместе получили Нобелевскую премию по физиологии и медицине. Впоследствии Ходжкин говорил, что премия должна была достаться кальмару, гигантский аксон которого сделал их эксперименты возможными. Но это проявление скромности не отдает должного сделанным этими двумя исследователями замечательным открытиям – открытиям, которые дали научному сообществу, в том числе новообращенным вроде меня, уверенность в том, что мы сможем разобраться в передаче сигналов в мозге и на более глубоком уровне.
Когда в нейробиологии стали применять молекулярно-биологические методы, выяснилось, что потенциал-зависимые натриевые и калиевые каналы представляют собой белки. Молекулы этих белков пронизывают клеточную мембрану насквозь и содержат заполненный жидкостью проход – ионную пору, по которой канал и пропускает ионы. Ионные каналы имеются в каждой клетке тела, не только в нейронах, и все они поддерживают мембранный потенциал покоя по тому же принципу, который некогда сформулировал Бернштейн.
Ионная гипотеза примерно так же, как до нее нейронная доктрина, упрочила связь между клеточной биологией мозга и другими областями клеточной биологии. Она окончательно доказала, что в работе нервных клеток можно разобраться, используя физические принципы, общие для всех клеток. Что особенно важно, ионная гипотеза подготовила почву для изучения механизмов передачи нейронных сигналов на молекулярном уровне. Универсальность и предсказательная сила ионной гипотезы объединили в единую дисциплину клеточные исследования нервной системы: эта гипотеза сделала для клеточной биологии нейронов то же, что открытие структуры ДНК – для всей биологии.
В 2003 году, через пятьдесят один год после того, как была сформулирована ионная гипотеза, Родерик Маккиннон из Рокфеллеровского университета удостоился Нобелевской премии по химии за получение первых трехмерных изображений расположения атомов в молекулах двух ионных каналов – проточного калиевого и потенциал-зависимого калиевого. Некоторые свойства, выявленные Маккинноном путем весьма новаторского структурного анализа этих двух белков, уже были предсказаны с поразительной проницательностью Ходжкином и Хаксли.
Поскольку движение ионов по каналам через клеточную мембрану имеет принципиальное значение для работы нейронов, а работа нейронов – принципиальное значение для психической деятельности, неудивительно, что мутации в генах, кодирующих белки ионных каналов, вызывают болезни. В 1990 году стало возможным сравнительно несложное и точное определение молекулярных дефектов, ответственных за генетические болезни человека. Вскоре после этого один за другим были выявлены дефекты ионных каналов, лежащие в основе ряда неврологических нарушений работы мышц и мозга.
Такие нарушения теперь называют каналопатиями, или нарушениями функции ионных каналов. К примеру, наследственная идиопатическая эпилепсия (наследственная эпилепсия новорожденных) оказалась связана с мутациями в генах, кодирующих белок калиевого канала. Последними достижениями в исследовании каналопатий и разработкой специфических методов лечения этих нарушений мы непосредственно обязаны обширному запасу знаний о работе ионных каналов, накопленному благодаря Ходжкину и Хаксли.
6. Разговор нервных клеток
Я пришел в лабораторию Гарри Грундфеста в 1955 году, вскоре после того, как в нейробиологии возник серьезный спор о том, как нейроны передают сигналы друг другу. Эпохальные работы Ходжкина и Хаксли позволили разрешить давнюю загадку, как электрические сигналы возникают в нейронах, но как они распространяются между нейронами? Чтобы один нейрон мог “говорить” с другим, он должен посылать сигнал через синапс, промежуток между клетками. Что же это за сигнал?