Великий квест. Гении и безумцы в поиске истоков жизни на Земле
Шрифт:
Особенно важно, что автокаталитические наборы могут возникать на основе случайной смеси химических веществ. Кауфман и его коллеги рассчитали, что вероятность образования автокаталитических наборов резко возрастает при увеличении в такой смеси числа химических веществ[175]. А начиная с некоторого их количества, автокаталитический набор возникает почти наверняка.
В статье Кауфмана 1971 года постоянно используется слово “гены”, однако вскоре автор решает от него отказаться. Молекулы, о которых писал ученый, вели себя не так, как гены в привычном понимании[176]. В частности, они вбирали в себя простые молекулы извне и использовали
В октябре 1971 года немецкий химик Манфред Эйген сформулировал идею, которая на первый взгляд кажется очень похожей на идею Кауфмана. Однако если присмотреться к ней получше, то станет ясно, что речь идет о противоположной точке зрения, которой придерживались сторонники мнения, что “вначале была генетика”[180]. Эйгену – лысеющему, высоколобому, с орлиным профилем – было тогда сорок четыре года. В 1967-м он разделил с двумя другими учеными Нобелевскую премию по химии за исследования сверхбыстрых химических реакций[181]. Теперь же, при содействии своего аспиранта Петера Шустера, он обратился к вопросу о возникновении жизни.
Подобно Кауфману, Эйген рассматривал множество постоянно сталкивающихся друг с другом органических молекул первичного бульона. Оба исследователя считали возможным образование автокаталитических наборов из аминокислот и белков (впрочем, Эйген данный термин не использует). Но Эйген указывает на одно ограничение: хотя новый белок с самыми выгодными свойствами и может образоваться, его последующее копирование гарантировать нельзя. Так что любая подобная “инновация” может быть утрачена.
Поэтому Эйген рассматривает более сложный набор молекул, который содержит и нуклеиновые кислоты-инструкции, и белки-катализаторы. Каждая из таких нуклеиновых кислот кодирует определенный белок, а тот, в свою очередь, создает копию соответствующей ему нуклеиновой кислоты. Однако такой комплект из белка и нуклеиновой кислоты может синтезировать еще и вторую нуклеиновую кислоту, а та, в свою очередь, создать свой собственный автокаталитический набор. Такую систему Эйген называет “гиперцикл”, поскольку в нее входит несколько питающих друг друга циклов химических реакций.
Гиперцикл – это частный случай автокаталитического набора[182]. В отличие от обычного набора, гиперцикл Эйгена может эволюционировать – благодаря сохранению и передаче изменений в нем с помощью нуклеиновых кислот. По мысли Эйгена, множество гиперциклов могло возникнуть в одной области первичного бульона и в дальнейшем конкурировать за ресурсы – до тех пор, пока не останется всего один их тип.
Гиперцикл – это строго и тщательно описанный шедевр творческого воображения. Он представляет собой убедительное изложение концепции зарождения жизни “вначале была генетика”, согласно которой первые нуклеиновые кислоты взяли на себя управление всей разношерстной компанией белков и превратили их в нечто организованное.
Но с гиперциклом есть и проблема: он нуждается не только в нескольких нуклеиновых кислотах и простых белках. Ему также необходимы рибосомы и транспортные РНК, без которых перевести сохраняемую нуклеиновыми кислотами информацию в форму белка попросту невозможно. Уже тогда ученые понимали, что рибосомы – это замысловатые молекулярные машины,
Абстрактные понятия гиперциклов, автокаталитических наборов и самокопирующихся предшественников жизни стали аргументами в споре о первичности генетики, метаболизма или компартмента – споре, который не стихает вот уже пятьдесят лет. Сторонники каждой из этих концепций предложили остроумные эксперименты и нашли убедительные (по их мнению) доказательства собственной правоты. В третьей части книги мы рассмотрим это подробнее. Пожалуй, это все, что следует сказать о разногласии, возникшем вокруг природы первого компонента живого.
Второе разногласие может показаться идентичным первому, хотя в действительности это не так. Оно касается того, какой именно тип биологических молекул возник первым. Была ли это нуклеиновая кислота, вроде ДНК и РНК, хранящая в себе генетическую информацию? А может, первыми стали белки, способные ускорять химические реакции, образовывать различные структуры и, возможно, еще и кодировать в себе генетическую информацию? Или первыми все же оказались жиры, точнее – липиды, молекулы которых ограничивают собой внешние границы клетки?
Позиция отдельных исследователей по вопросу о первой биологической молекуле в некоторой степени соответствовала их взглядам на то, какой компонент жизни возник первым. Отдающие приоритет генам ученые чаще полагали, что первыми возникли именно нуклеиновые кислоты. Однако такое соответствие не было строгим – обсуждались все возможные сочетания. Сидни Фокс и его коллеги считали (подробности мы узнаем в главе 7), что первыми возникли белки и что именно они стали и первыми биологическими катализаторами, и первыми границами клеток.
Это второе разногласие возникло не на пустом месте. Дело в том, что жизнь в современном виде может искажать наши представления о том, что она представляла собой в самом начале. Например, отсутствие кодирующих информацию белков у современных организмов не означает, что они (белки) в принципе не способны выполнять эту функцию. И действительно: если белки возникли до нуклеиновых кислот, то первые живые существа вполне могли найти им такое применение, несмотря на то, что белковые молекулы были не слишком надежными хранилищами информации. Это предположение озвучил Карл Саган на конференции в Уэйкулле: “Возможно существование полинуклеотидов, имеющих слабые каталитические свойства; возможно и существование полипептидов, умеющих, хоть и плохо, создавать свои копии. Нам стоит разобраться с этим”[183].
Вдобавок к этим двум разногласиям имелось еще и третье: место зарождения на Земле жизни. Многие ученые в этом вопросе поддерживали Опарина и Холдейна и считали, что она появилась в море. Для палеонтологов это вообще непреложная истина, поскольку все самые древние ископаемые животные вроде трилобитов обитали именно в морях. На сушу животные и растения выбрались много позже, в пределах последних полумиллиарда лет. Море рассматривалось как стабильная среда, в которой примитивные хрупкие формы жизни имели больше шансов уцелеть. Но если в море, то где именно? В мрачных глубинах или у поверхности воды? В водной толще или на дне? В 1970-е годы исследователи обратили внимание на гидротермальные источники, которые возникают там, где горячая вода проникает сквозь морское дно в холодный океан. В главе 11 мы убедимся, что мысль о таких источниках на дне океана как о колыбели жизни получила сильную поддержку.