Вертолет 2001 04
Шрифт:
Ровесник XX века, Аполлинарий Константинович принадлежит к школе великого русского ученого-механика Николая Егоровича Жуковского. Традиции именно этой школы стали базой для мощного подъема авиационной науки и техники в нашей стране.
В начале 40-х годов А.К. Мартынов возглавил отделение ЦАГИ по аэродинамике самолетов, а позднее – отделение ЦАГИ по аэродинамике и динамике вертолетов и проблемам штопора самолетов. Под его руководством были созданы экспериментальная база для проведения экспериментов в аэродинамических трубах и на разнообразных исследовательских стендах и установках, совершенные автоматизированные системы экспериментальных исследований различных видов с использованием новейших электронных и оптических средств.
Особое значение Аполлинарий Константинович придавал глубокому научному поиску, направленному на получение конкретных практических результатов.
Долгие годы профессор Мартынов преподавал в Московском авиационном институте на кафедре аэродинамики, был бессменным руководителем аспирантуры ЦАГИ. Трудно назвать число его учеников, многие из них и сегодня успешно трудятся в научно-исследовательских институтах, конструкторских бюро, на заводах авиационной промышленности России и других стран. Автор этих строк – тоже ученик А. К. Мартынова, учившийся в МАИ и в дальнейшем более 30 лет проработавший под его руководством в ЦАГИ.
К юбилею ученого и педагога в нашем институте подготовлена и издана книга А.К. Мартынова «Записки научного работника ЦАГИ» – своеобразная летопись событий, встреч, воспоминаний о людях, с которыми ему довелось работать. Книга ценна тем, что раскрывает многие малоизвестные страницы славной истории развития отечественной авиационной науки, знакомит ближе с выдающимися отечественными учеными, к числу которых, несомненно, принадлежит и почитаемый мною Аполлинарий Константинович Мартынов.
Одна из глав книги под названием «Послевоенные годы» (мы предлагаем читателям «Вертолета» ее сокращенный вариант) рассказывает о создании и работе вертолетной части 5 лаборатории ЦАГИ, первых шагах по созданию экспериментальной базы для исследования винтокрылых аппаратов.
Евгений ВОЖДАЕВ
заместитель директора ЦАГИ, лауреат Государственной премии СССР
Записки научного работника ЦАГИ
.. .Когда я возглавил лабораторию, передо мной прежде всего встала задача создания экспериментального оборудования для исследования вертолетов. Это оборудование, строго говоря, отсутствовало или было в самом «зачаточном состоянии». Весь коллектив лаборатории помещался в здании вертикальной трубы: было очень тесно и для сотрудников, и для приборов. Вертолет – очень сложный и в то время сравнительно мало изученный летательный аппарат. Необходимо было начинать целый ряд новых работ по исследованию схемы аппарата, его аэродинамики и динамики. Словом, положение было очень трудное.
Но, как бывает иногда в подобных положениях, поддержка пришла неожиданно. Корейская война показала очень ценные боевые свойства вертолетов. Министр авиационной промышленности дал серьезное указание по развертыванию вертолетостроения. Должны были строиться вертолеты Ми-4 взлетной массой 6950 кг в ОКБ Миля, и вертолеты Як-24 взлетной массой 14270 кг в ОКБ Яковлева. Процесс создания этих вертолетов нужно было обеспечить исследовательской работой в ЦАГИ, ЦИАМе, ЛИИ и других институтах МАП.
Создавались условия, при которых можно было расширять работы по аэродинамике и динамике вертолета. Было получено разрешение на постройку специального нового корпуса, в котором можно было располагать натурные и крупномасштабные объекты – препараторскую, мастерскую с возможностью монтажа и опробования натурных объектов, специальные рабочие помещения для проведения работ по электротехнике и электронике, мастерские механические и слесарные, помещения для размещения конструкторов и комнаты для научных и технических работников. Был создан проект четырехэтажного корпуса, значительная часть которого была предназначена и для исследований по прочности вертолета. Неподалеку от строящегося корпуса были расположены две площадки для наземных испытаний несущих винтов, снабженные мощным силовым полом и ограждением по периферии на случай возможного отрыва лопасти несущего винта или ее части.
Остро встал вопрос о создании экспериментального оборудования. Мы задумали целую серию приборов для исследования вертолетов как в аэродинамической трубе Т-105, так и в больших трубах ЦАГИ. Ряд приборов было поручено изготовлять заводам, которые создавали вертолеты. Был привлечен ЦИАМ. Одним словом, наши возможности проведения работ более широким, чем ранее, фронтом существенно возросли.
В пятидесятые годы аэродинамическая труба Т-105 была оснащена рядом экспериментальных установок, имевших шифр МВП: МВП-1, МВП-2 и т.д., что означало модельный вертолетный прибор (с очередным номером). Создано
Сложнее было с созданием стендов для натурных объектов и крупномасштабных моделей. Фактически создание стенда для натурного объекта мало чем отличается от создания натурного вертолета: отсутствует эксплуатационное оборудование и вооружение, но добавляются измерительные устройства. Вместо газотурбинного или поршневого двигателя внутреннего сгорания чаще всего устанавливается электродвигатель со специальной системой питания. Для обеспечения безопасности при проведении опытов на площадке для наземных испытаний и в аэродинамической трубе во всех стендах было создано дистанционное управление как несущим винтом, так и стендом в целом.
В течение пятидесятых и шестидесятых годов было построено четыре стенда, комплекс которых позволял проводить исследования и несущих винтов натурного размера, и их крупных моделей.
Когда я пришел в 5 лабораторию (я говорю о ее вертолетной части), тематика научной работы находилась еще в стадии становления. Ряд направлений был намечен М.Л. Милем, но все они имели прицел на обеспечение его будущего вертолета необходимыми расчетными и экспериментальными материалами.
Таким образом, помимо создания экспериментальной базы, о которой я уже говорил выше, необходимо было ставить новые направления деятельности лаборатории. Прежде всего, решено было передать в лабораторию прочности ЦАГИ те задачи, которые были включены в тематику нашей лаборатории и не были ей свойственны как аэродинамической лаборатории. С известными трудностями это удалось сделать за исключением проблемы «земного резонанса». Эта тематика так и осталась за вертолетной аэродинамической лабораторией и присутствовала в планах лаборатории еще целый ряд лет.
Расчет несущего винта и разработка методики его проектирования для различных весовых категорий и схем вертолетов занимали значительную часть тематики лаборатории. Это направление возглавлял Л.С. Вильдгрубе – работник с заводским опытом. Он и его группа вели, в основном, расчетные работы со схемой вихрей в форме плоской вихревой пелены. Как известно, эта схема оправдывается при полетах на сравнительно больших скоростях, конечно, без учета влияния сжимаемости среды. Обширные эксперименты на вновь созданных приборах в аэродинамической трубе Т-105 имели своей целью проверку и подтверждение разработанных расчетных методов. Таким образом, совершенствовалась и уточнялась чисто индуктивная сторона явления. Я же, исходя из своего самолетного опыта, считал, что необходимо уделять большое внимание профилю лопасти и пытался привлечь к этой проблеме Л.С. Вильдгрубе и его коллектив. Однако это направление исследований не развивалось, и только пришедшего в группу Вильдгрубе Е.С. Вождаева, моего ученика по МАИ, мне удалось заинтересовать этой темой. Впоследствии, в семидесятые годы, был получен ряд очень удачных профилей для лопастей несущих винтов, нашедших успешное применение на практике.
Другим направлением, которое я хотел с самого начала развить, было определение перемещения и деформаций лопастей в своем крайне прихотливом движении. Интересно было знать, каков же профиль винта при работе и как он расположен. Эта чрезвычайно трудная задача решалась различными способами – тензометрированием лопасти, а также при помощи киноосциллографа. Однако все это было малоэффективно, и существенный сдвиг в решении проблемы произошел только после внедрения в практику лазерной оптики.
Для аэродинамической трубы Т-105 были созданы ЛИИС (лазерные информационно-измерительные системы) «Рельеф» и «Конус», позволившие фиксировать на фотопластинке или экране телевизора картины распределения интерференционных полос на лопасти. Эти картины после расшифровки позволяли мгновенно получить информацию о деформации или перемещениях отдельных элементов лопасти при ее определенном азимутальном положении.