Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности
Шрифт:
Однако важен не только используемый алгоритм, но и принцип обучения создаваемых моделей. Модели обучения с учителем (на сегодняшний день наиболее распространенные в бизнесе) учатся на основе набора тренировочных данных с маркированным результатом. Например, модель машинного обучения, которая пытается предсказать мошенничество в банке, необходимо учить на системе, где мошенничество в некоторых случаях было однозначно установлено. Это непросто, поскольку частота мошенничества может составлять 1 случай на 100 000, и порой эту проблему называют проблемой несбалансированности классов.
Обучение с учителем очень похоже на традиционный аналитический метод регрессионного анализа, который используется в модели оценки. Цель регрессионного анализа заключается в том, чтобы создать модель,
Регрессионный процесс напоминает машинное обучение с учителем, но имеет ряд особенностей:
В машинном обучении данные, используемые для разработки (тренировки) модели, называются тренировочными данными и могут представлять собой подмножество данных, необходимых исключительно для тренировки системы.
В машинном обучении тренировочная модель часто утверждается при помощи другого подмножества данных, для которого известен подлежащий предсказанию результат.
В регрессионном анализе может и не возникнуть желание использовать модель для предсказания неизвестных результатов, тогда как в машинном обучении наличие этого желания подразумевается.
В машинном обучении может использоваться множество различных алгоритмов, которые не ограничиваются простым регрессионным анализом.
Модели обучения без учителя, как правило, более сложны в разработке. Они распознают закономерности в данных, которые не маркированы заранее и для которых неизвестен результат. Третий способ обучения, обучение с подкреплением, предполагает, что система машинного обучения имеет определенную цель и каждое продвижение к этой цели вознаграждается. Такой способ весьма полезен в играх, однако он также требует огромного объема данных (и из-за этого порой теряет практичность) [15] . Важно отметить, что модели машинного обучения с учителем обычно не учатся непрерывно: они учатся на основе набора тренировочных данных, а затем продолжают использовать ту же модель, если только не задействуется новый набор тренировочных данных, на основе которого обучаются новые модели.
15
Alex Irpan, "Deep Reinforcement Learning Doesn't Work Yet," Sorta Insightful blog post, February 14, 2018, https://www.alexirpan.com/2018/02/14/rl-hard.html.
Модели машинного обучения опираются на статистику. Оценить их растущую ценность можно в сравнении с традиционной аналитикой. Как правило, они точнее традиционных «кустарных» аналитических моделей, основанных на человеческих предположениях и регрессионном анализе, но при этом они сложнее и хуже поддаются интерпретации. Автоматизированные модели машинного обучения могут создаваться намного быстрее и описывать более детализированные наборы данных, чем в случае с традиционным статистическим анализом. При наличии необходимого объема данных для обучения модели глубокого обучения очень хорошо справляются с такими задачами, как распознавание изображений и голоса. Они работают гораздо лучше, чем ранние автоматизированные системы для решения этих задач, а в некоторых сферах их возможности уже сравнимы с человеческими или даже превосходят их.
С 1950-х гг. перед исследователями ИИ стояла цель научить машину распознавать язык человека. В эту сферу, называемую обработкой естественного языка, входят такие варианты использования технологий, как распознавание речи, текстовый анализ, перевод, генерация текста и решение других языковых задач. ОЕЯ использовали 53 % компаний, участвовавших в опросе об осведомленности о когнитивных технологиях. Есть два основных подхода к ОЕЯ – статистический и семантический. Статистическая ОЕЯ основана на машинном обучении и сегодня совершенствуется быстрее семантической. Она требует большого корпуса, или совокупности, текстов, на которых учится. Например, для перевода требуется большой объем переведенных текстов, статистически анализируя которые система узнает, что испанское и португальское слово amor находится в тесной статистической взаимосвязи с английским словом love. Этот метод использует «грубую силу», однако часто он довольно эффективен.
До последнего десятилетия внимание уделялось исключительно семантической ОЕЯ, и она демонстрирует умеренную эффективность, если система удачно натренирована на распознавание слов, синтаксиса и концептуальных связей. Однако обучение языку и инженерия знаний (которая часто предполагает создание графа знаний в определенной области) требуют много времени и сил. Для этого необходима разработка онтологий или моделей отношений между словами и фразами. Хотя создавать семантические модели ОЕЯ нелегко, сегодня этим занимаются несколько систем интеллектуальных агентов.
Производительность систем ОЕЯ следует измерять двумя способами. Первый – оценивать процент произнесенных слов, которые система понимает. Этот показатель возрастает при использовании технологии глубокого обучения и часто превышает 95 %. Второй способ – проверять, на какое количество различных типов вопросов система в состоянии ответить, а также сколько задач она может решить. Как правило, для этого необходима семантическая ОЕЯ, а поскольку в этой сфере нет серьезных технических прорывов, системы, которые отвечают на вопросы или решают конкретные задачи, контекстно обусловлены и требуют тренировки. Компьютер IBM Watson прекрасно справился с ответами на вопросы Jeopardy! но не сможет отвечать на вопросы Wheel of Fortune, если его не тренировать, а эти тренировки часто весьма трудоемки. Возможно, в будущем для ответов на вопросы будет применяться метод глубокого обучения, однако пока этого еще не делали.
В 1980-х гг. экспертные системы на основе наборов правил «если – то» были доминирующей технологией ИИ и долгое время широко использовались в коммерческих целях. Сегодня их обычно не считают последним словом техники, но проведенный в 2017 г. опрос Deloitte об осведомленности о когнитивных технологиях показал, что их по-прежнему используют 49 % американских компаний, работающих с ИИ.
Экспертные системы требуют, чтобы эксперты и инженеры знаний разработали набор правил для конкретной области знаний. Они широко распространены, к примеру, в страховом андеррайтинге и банковском кредитном андеррайтинге, но также используются в нетрадиционных областях вроде обжарки кофе в Folgers или приготовлении супов в Campbell's. Они неплохо работают и просты для понимания. Однако, если количество правил велико (обычно больше нескольких сотен) и правила начинают конфликтовать друг с другом, системы не справляются с задачами. Кроме того, если меняется область знаний, приходится менять и все правила, а это сложно и трудоемко.
Системы на основе правил не слишком усовершенствовались с момента своего раннего расцвета, но представители активно применяющих их отраслей (вроде страхования и банковского дела) надеются, что вскоре появится новое поколение технологий на основе правил. Исследователи и поставщики технологий уже обсуждают возможность создания «адаптивных машин обработки правил», которые будут постоянно модифицировать правила на основе новых данных, или комбинаций машин обработки правил с машинным обучением (но все это пока не получило широкого распространения).