Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности
Шрифт:
Физическими роботами сегодня никого не удивить, ведь каждый год по всему миру внедряется более 200 000 промышленных роботов. В том или ином качестве физических роботов используют 32 % компаний, руководители которых приняли участие в опросе об осведомленности о когнитивных технологиях. На заводах и складах роботы выполняют такие задачи, как подъем и перемещение грузов, а также сварка и сборка объектов. Ранее они управлялись детализированными компьютерными программами, которые позволяли им выполнять конкретные задачи, но в последнее время роботы более тесно сотрудничают с людьми, а обучать их стало легче, поскольку можно просто пройти с ними весь цикл необходимой задачи. Они также становятся
Эта технология выполняет структурированные цифровые задачи (то есть задачи, связанные с информационными системами) так, как если бы их выполнял человек, следующий сценарию или правилам. Не все согласны, что РАП принадлежит к семейству технологий ИИ и когнитивных технологий, поскольку она не слишком интеллектуальна. Однако системы РАП популярны и автоматизированы, а их интеллектуальность растет, поэтому я включаю их в мир ИИ. Иногда их называют цифровой рабочей силой. В сравнении с другими формами ИИ они не слишком дороги и просты в программировании. При этом их работа прозрачна. Если вы умеете пользоваться мышкой, понимаете графические модели технологических процессов и готовы создать несколько бизнес-правил «если – то», вы в состоянии разобраться в этой технологии и, возможно, даже разработать РАП. Настраивать и внедрять такие системы также гораздо проще, чем разрабатывать собственные программы, используя язык программирования.
РАП не задействует роботов – только компьютерные программы на серверах. Опираясь на сочетание рабочего процесса, бизнес-правил и интеграции «уровня представления» с информационными системами, она функционирует как полуинтеллектуальный пользователь этих систем. Порой РАП сравнивают с макрокомандами электронных таблиц, но я считаю такое сравнение некорректным, поскольку РАП может справляться с гораздо более сложными задачами. Ее также сравнивают с инструментами управления бизнес-процессами, которые могут управлять рабочим процессом, но на самом деле технология была создана для того, чтобы документировать и анализировать процесс, а не автоматизировать его [16] .
16
Doug Williams, "How Is RPA Different from Other Enteprise Automation Tools Such as BPM/ODM," IBM Consulting Blog, July 10, 2017, https://www.ibm.com/blogs/insights-on-business/gbs-strategy/rpa-different-enterprise-automation-tools-bpmodm/.
Некоторые системы РАП уже в определенной степени наделены интеллектом. Они могут «наблюдать» за тем, как работают их коллеги-люди (например, как они отвечают на частые вопросы клиентов), и имитировать их действия. Другие сравнивают процесс автоматизации с машинным зрением. Как и физические роботы, системы РАП постепенно становятся более интеллектуальными, а для управления их поведением начинают использоваться другие типы технологий ИИ.
Я описал эти технологии по отдельности, но все чаще они объединяются и интегрируются. Однако сегодня человеку, принимающему бизнес-решения, очень важно знать, какие технологии какие задачи выполняют. Директор по информационным технологиям Global Inc. Кришна Натан отмечает, что в 2018 г. один из ключевых приоритетов его компании – «помочь акционерам понять, на что способен и не способен ИИ, чтобы использовать его должным образом» [17] . Возможно, в будущем эти технологии окажутся так тесно переплетены, что необходимость в таком понимании исчезнет, а возможно, технологии вообще станут неотделимы друг от друга.
17
Steven Norton, "The Morning Download," The Wall Street Journal CIO Journal, December 29, 2017, https://blogs.wsj.com/cio/2017/12/29/cios-aim-to-make-ai-useful-hire-the-right-people-to-manage-it-in-2018/.
ИИ
В этой книге я в основном рассказываю об использовании когнитивных технологий крупными предприятиями в таких сферах, как предоставление финансовых услуг, производство и телекоммуникация. Но большая часть работы, выполняемой крупными коммерческими предприятиями, стала возможной благодаря исследованиям и разработкам, проводившимся в тех же местах, где в 2000-х гг. развивались технологии больших данных (включая Hadoop, Pig и Hive). В этот период Google, Facebook и в меньшей степени Yahoo! направляли значительные усилия на развитие технологий ИИ. Эти компании располагали огромным объемом данных для анализа, огромным количеством денег (по крайней мере в случае Google и Facebook) и прочными связями с учеными.
Пожалуй, не стоит удивляться, что компания Google стала самым активным разработчиком и пользователем технологий ИИ среди интернет-гигантов (а возможно, и среди всех компаний мира). Работая в сотрудничестве со стэнфордским профессором Эндрю Ыном, Google начала исследовать ИИ (в частности, глубокое обучение) в лабораториях Google X еще в 2011 г. Этот проект получил название Google Brain. Главным образом в рамках него изучалась технология глубокого обучения, которая использовалась для распознавания изображений и решения других задач. К 2012 г. группа исследователей решила одну из самых важных проблем человечества – как заставить машину распознать фотографию кота в интернете.
В следующем году Google наняла исследователя из Университета Торонто Джеффри Хинтона, который помог возродить нейронные сети. В 2014 г. Google купила лондонскую компанию DeepMind, весьма компетентную в сфере глубокого обучения. Инструменты группы были использованы, чтобы помочь созданной Google программе AlphaGo, играющей в древнюю игру го, победить одного из лучших игроков в мире. В 2016 г. команда Google Brain помогла Google существенно улучшить точность переводов Google-переводчика. К тому году Google и ее материнская компания Alphabet использовали машинное обучение более чем в 2700 проектах, включая разработку алгоритмов поиска (RankBrain), создание беспилотных автомобилей (теперь этим занимается Waymo – дочерняя компания Alphabet) и усовершенствование медицинской диагностики (дочерняя компания Calico) [18] . Как это принято в Кремниевой долине, в 2015 г. Google также открыла бесплатный доступ к своей библиотеке машинного обучения TensorFlow, которая стала проектом с открытым кодом и завоевала популярность среди компаний более узкой направленности, использующих ИИ.
18
Jack Clark, "Why 2015 Was a Breakthrough Year in Artificial Intelligence," Bloomberg.
Возможно, Facebook внедряет когнитивные технологии в свои продукты и процессы не столь успешно, как Google, но получается все же довольно неплохо. Вместо Эндрю Ына и Джеффа Хинтона исследованиями ИИ в компании занимается Ян Лекун, который также преподает в Нью-Йоркском университете. Лекун уделяет особое внимание распознаванию изображений, что стало ключевым направлением разработок Facebook. У компании есть приложение для распознавания изображений Lumos, которое анализирует фотографии в Facebook и Instagram и предлагает пользователям персонализированную рекламу на основании их материалов. Lumos также помогает идентифицировать запрещенные порнографические материалы или материалы, содержащие насилие (хотя в этом процессе по-прежнему задействовано и большое количество людей), неправомерное использование брендов и логотипов и материалы террористической направленности.
Конец ознакомительного фрагмента.