ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
x + iy=(p + iq) 2 = p2– q2 + 2pqi.
Теперь я сравниваю левую часть с правой и заключаю, что
х = p2– q2; y = 2pq,
откуда уже сразу следует, что
z = р2 + q2.
– 98 -
Это, правда, не совсем строго, хотя бы потому, что из a•b = z2 не следует, что а и b непременно квадраты, но формулы получаются как раз те, какие нам нужны. Обратите, кстати, внимание еще на то, что одно равенство комплексных чисел заменяет собой два равенства обычных чисел. Это тоже ведь преимущество немалое! Теперь позвольте вам указать еще и на то, что если
Илюша утвердительно кивнул. И тотчас на стене появилось:
(х3– 1) = (x - 1) (х2 + х + 1).
– Ну, а мы можем разложить вам эту разность не на два, а на три множителя, и получится вот что...
– Вы легко можете убедиться в справедливости этого равенства, либо просто перемножив эти три скобки, либо решив квадратное уравнение, которое представляет собой ваш неполный квадрат суммы.
х2 + х + 1 = 0.
– Ну вот, - продолжал Мнимий, - отсюда вы легко можете видеть, что мы вполне можем иметь прямое отношение к задачам, в которых есть только вещественные числа. С этим несложным, но очень полезным разложением мы еще встретимся в дальнейшем, когда займемся вопросами довольно хитрыми (но при этом замечательно интересными) через каких-нибудь двенадцать Схолий. Причем мы способны делать то, о чем вещественные числа и понятия не имеют. А так как наша арифметика очень похожа на арифметику вещественных чисел, то вы можете прийти к нам, а потом вернуться к вещественным числам, и никаких недоразумений у вас не получится. А мы будем вам с удовольствием помогать теми своими способностями, которых у вещественных чисел нет. Мало того, мы еще вам что-нибудь подарим на память, чего вы даже у нас не просили. Вот, например, разложим разность кубов на три множителя, а если вы внимательно присмотритесь к этому разложению, то увидите, что наше решение имеет непосредственное отношение к геометрической задаче о том, как вписать в окружность равносторонний треугольник. И это потому, что мы друзья с синусами и косинусами, а коэффициенты, которые мы вам вывели, равны: один - синусу тридцати градусов, а другой - косинусу тридцати градусов.
– 99 -
Илюша не мог сразу сообразить, при чем тут равносторонний треугольник, но, вспомнив, что синус 30° действительно равен одному из приведенных Мнимием Радиксовичем коэффициентов (то есть половине), не решился спрашивать и дал себе слово, что на досуге возьмет геометрию и сам все разберет.
– Теперь, - сказал Илюша, - я, кажется, начинаю понимать, как вы помогаете. Это замечательно!
– Милый юноша, - отвечал ему Мнимий Радиксович, - все, что вы здесь увидите, все вам будет помогать. Только надо научиться пользоваться нашей помощью. Это кажется трудным, но ведь вы когда-то и читать не умели, однако научились! Так и здесь то же самое. А если вы меня спросите теперь, почему мы с такой охотой беремся помогать вам в чужой задаче, то я вам отвечу, что, во-первых, всякому охота показать, на что он способен, ну, а потом, знаете, это все-таки довольно забавно - натянуть нос этим неповоротливым вещественным числам, чтобы они не важничали, потому что они народ ужасно спесивый, но совершенно не могут быть такими юркими, догадливыми и любезными, как мы! Однако, не всякий сразу с нами освоится. Вот, например, число шесть - поговорите о нем с вещественными числами, и они вам скажут, что это просто "дважды три". Справедливо, разумеется! Но с нашей точки зрения его можно еще немного иначе написать:
2 • 3 = 6 = (1 + √-5)(1 + √-5).
Попробуйте проверьте! Надо, видите ли, еще иметь в виду, что вопросы делимости могут касаться даже и алгебраических выражений, а ведь это очень важно, ибо алгебра-то и учит нас решать вопросы в общем виде. Вот задачка: дано выражение
m3 + 6m2 + 11m +6.
Спрашивается,
– Не знаю, - ответил смутившийся Илюша, - может быть, попробовать разложить на множители?
– 100 -
И мальчик получил:
(m + 2) (m + 3) (m + 4).
– А теперь заменим (m+ 2) на n. И тогда?
Илюша написал, а затем ответил нерешительно:
– Три натуральных числа подряд. Произведение! Коли так... то должно делиться на три! Вот странная задачка! Сразу не разберешься. А ведь мне нужно еще узнать про Дразнилку, - обратился Илюша к Радиксу, ибо Мнимий уже исчез.
– Ты расскажешь?
– Отчего же!
– ответил Радикс, беря со стола три картоночки, каждая величиной с почтовую карточку, и протягивая их Илюше.
– Мы с тобой сначала рассмотрим самый простенький случай - тройного Дразнилку, который у тебя назывался "икс". Помнишь?
– Помню!
– сказал Илюша, разглядывая карточки. На каждой стояла цифра: 1, 2 и 3.
– Так вот, - продолжал Радикс, - положи их на стол в обычном порядке. Запиши мелом на стене эту первую комбинацию, исходный порядок, то есть 1-2-3. А теперь перекладывай их так: ту, которая стоит спереди, клади в самый конец и повторяй дальше тем же порядком. Это круговая, или циклическая, перестановка.
Илюша переложил несколько раз, потом сказал:
– Больше не выходит. Опять то же самое получается.
– А теперь разложи их в обратном порядке: 3-2-1 и перекладывай опять так же.
– И тут то же, - ответил Илюша.
– Опять я пришел к тому же, с чего начал, то есть к 3-2-1.
– Ну, теперь запиши.
Илюша записал так:
А)
1 - 2 – 3
2 – 3 – 1
3 – 1 - 2
Б)
3 – 2 - 1
2 – 1 - 3
1 – 3 - 2
– Вот они и все, - сказал Илюша, - их всего шесть штук.
– Попробуй, - посоветовал Радикс, - взять опять комбинацию 1-2-3 и перекладывать не переднюю назад, а заднюю вперед.
– Не стоит, - отвечал Илюша, - это я уже пробовал там, у Розамунды. То-то и дело, что они ходят друг за дружкой гуськом. И все равно в какую сторону двигать.
– 101 -
– Правильно, - сказал Радикс.
– А теперь положи карточки рядом в порядке 1-2-3 и посмотри в зеркало, что у тебя получится.
Илюша посмотрел в зеркало и увидел, что из его комбинации 1-2-3 в зеркале получается 3-2-1.
– Как раз наоборот!
– сказал он.
– Из "А" получается "Б".
– Ну, теперь переставляй их вкруговую. И смотри, что выходит в зеркале.
Из 2-3-1 в зеркале вышло 1-3-2; из 3-1-2 получилось 2-1-3.
– Ну, как ты думаешь, - спросил Радикс, - можно ли уложить карточки так, чтобы и перед зеркалом и в зеркале получилось одно и то же расположение?
– Н-нет, - сказал в недоумении Илюша.
– Ну как же это возможно? Нет, нельзя!
– Так, - отвечал его наставник, - Значит, там один круг, а здесь другой. Ну, вот и всё. Весь секрет Дразнилки в том, что там при наличии одной пустышки, в сущности, возможны только круговые перестановки. Игра в Дразнилку, как ты и сам понимаешь, это игрушка, почти безделка, но вот именно из-за того, что в этой игре участвуют эти круговые перестановки, о которых мы еще наговоримся впоследствии, игрушка эта получает довольно серьезный смысл. А перевести 1-2-3 в 3-2-1 циклической перестановкой нельзя, как нельзя добиться, чтобы в зеркале было то же, что перед зеркалом. Значит, если у тебя стоит с самого начала какая-нибудь комбинация из круга "А", то ты можешь прийти к основной комбинации 1-2-3.
– 102 -
Это будет четный круг. Но если у тебя стоит комбинация из круга "Б", то ее перевести в основную комбинацию невозможно. Но это - круг нечетный. Попробуй теперь в основной комбинации 1-2-3 переставить две какие-нибудь рядом стоящие цифры.
Илюша переставил. Из 1-2-3 получилось 1-3-2, потому что он переставил 2 и 3.
– Вот теперь получился круг "Б".
– Переставь еще двух соседей.
Илюша поменял местами 3 и 1 и получил 3-1-2.
– А теперь получился круг "А".