ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
– 177 -
Сам Архимед определял задачу этого сочинения так: оно должно доказать, что данное число песчинок не бесконечно и что возможно построить число, превышающее его. Но ведь песчинки - только частный пример, поэтому я настаиваю на моем первом определении задачи "Псаммита" (так называется по-гречески это сочинение Архимеда).
– Это очень интересно, - ответил Илюша поразмыслив.
– Но ведь это только для того, чтобы посмотреть, к чему приведет такая странная задача? Не правда ли?
– Напрасно ты так думаешь, - ответил, нахмурясь, Радикс, - совершенно напрасно!.. "Псаммит"
– По-моему, - сказал Илюша, - это будет история путешествия синьориты Одной Энной по натуральному ряду.
– Недурно сказано!
– воскликнул Радикс.
– Недурно!
– По-видимому, эта особа будет все уменьшаться в объеме.
– А не найдешь ли ты такого числа, на которое она все более и более будет походить?
– Не знаю, - произнес мальчик осторожно, - какое же это может быть число. Ну, разве что нуль? То есть я хочу сказать, что чем дальше будет продолжаться прогулка синьориты Одной Энной по натуральному ряду, тем труднее ее будет отличить от нуля.
– Это разумный вывод, - отвечал одобрительно Радикс.
– Так, конечно, и будет. Ну, а что случится, по-твоему, если я возьму все значения твоей приятельницы, госпожи Одной Энной, и начну теперь делить единицу на каждое из ее значений? Ну-ка!
– Ясно, - отвечал Илюша, - что ты снова получишь все те целые числа, с которых я начал, когда мы заговорили и синьорите Одной Энной.
– 178 -
– Прелестно! Рад от души!.. Но скажи на милость, а нет ли такой величины или даже такого математического образа, на который все более и более будут походить эти все растущие и растущие обратные величины значений синьориты Одной Энной?
Илюша не знал, что ответить на это, и только высказал предположение, что числа эти будут невообразимо громадны, так что вскоре даже и слава пресловутого "последнего" архимедова числа сильно потускнеет.
– Послушай, Илюша, - промолвил" Радикс, - ты только что сказал: что ни далее, тем значения синьориты Одной Энной все менее и менее будут отличаться от...
– От нуля.
– Правильно. Следовательно, перед нами будет ряд частных, делители которых все приближаются и приближаются к нулю. Прекрасно! А к чему же будут приближаться частные?
Илюша призадумался. Затем он сказал так:
– Видишь ли, я слышал, что есть такое слово "бесконечность". Только я не знаю: правильно ли будет, если мы сейчас о нем вспомним? Как ты скажешь?
– Это дело серьезное. И даже весьма. Тут есть над чем голову поломать. А в общем, чтобы подвести
Илюша подумал и ответил так:
– Какую бы мой собеседник величину ни назначил, я немедленно сооружу число во много раз больше.
И Радикс улыбнулся, на этот раз вполне удовлетворенный ответом Илюши.
– 179 -
Схолия Одиннадцатая,
которая, во-первых, довольно длинная, а во-вторых, не так уж проста, так что читателю придется проявить если не упрямство, то немалое упорство, коли он хочет и дальше играть в схолии. Однако если не читать этой схолии, то и вообще больше ничего читать в этой книжке не придется. Поэтому тот, кто хочет читать далее Одиннадцатой Схолии, должен запастись мужеством. Тогда он узнает кое-что новое о яблоках, о кружочках и прутиках одного не очень послушного и даже упрямого мальчика, который жил неподалеку от одной большой горы. Именно тут Илюша слышит превосходные арифметические рассуждения, но как только дело чуть-чуть касается геометрии, поднимается невероятная кутерьма, вызванная появлением некоего неуклюжего авиадесанта, одолеть который только и можно с помощью вышеупомянутого упрямства.
– Ну-с, уважаемый Илья Алексеич, - произнес важно Радикс, - изложите мне вкратце, как вы себя изволите чувствовать.
Илюша посмотрел на него немного подозрительно, припомнив не совсем приятный разговор с командором, но потом решил, что вряд ли Радикс вспоминает именно об этой истории.
– 180 -
– Во-первых, - начал Илюша, - мне никогда в голову не приходило, что у нас здесь столько чудес. Во-вторых, я никогда не думал, чтобы такой пустяк, как, например, Дразнилка, мог привести к таким серьезным и сложным выводам.
Правда, мне папа раз прочел две строчки из стихов, которые написал поэт Баратынский про Ньютона, но только я... если уж по совести сказать... пропустил эту штуку мимо ушей...
– А ты помнишь эти строчки?
– Помню, - ответил Илюша.
– Вот как там сказано:
Ну, это в том смысле, что человек, увидавши вещь самую простую, которую все видали миллионы раз, подумал над ней, как следует размышлять настоящему ученому, и открыл, что такое всемирное тяготение. Только я не знаю, так я рассказываю или нет.
– Приблизительно так, - сказал его друг.
– Как будто и на самом деле с Ньютоном случилось нечто в этом роде, но в данном случае ведь не это самое важное. Ты ведь вспомнил об этом стишке потому, что теперь ты заметил, как размышление над предметами самыми простыми и обычными может привести нас к очень важным и глубоким заключениям. Так я тебя понял?
– Да, - ответил Илюша, - я как раз это и хотел сказать.
– Хорошо, что ты это заметил. Надо только еще вспомнить вот о чем. Эти стихи неправильны и в другом смысле.