Волшебный двурог
Шрифт:
Значит, свободный ее член у нас обозначается теперь буквой q.
Если попробовать решить квадратное уравнение:
х2 — 8х + q = 0,
мы получим…
— …вот что! — сказал Илюша и написал:
Значит, пока наше q
— Разумеется! — согласился Мнимий.
— А когда q равно в точности шестнадцати, парабола только касается оси абсцисс в точке, равной четырем. Если же q равно нулю, то оба корня будут действительные — один равен нулю, а другой — восьми. Но только… как же нам теперь увидать еще и комплексные корни?
— Не спеши, — отвечал Радикс, — сейчас мы все это соорудим. А уж ты следи внимательнее за этим новым тонким и умным волшебством. Нам ведь нужно определить, существуют ли такие комплексные числа, чтобы при подстановке их в левую
— 419 —
часть уравнения мы получили бы действительное число? Существуют ли, а если да, то каковы они?
— Тогда, — отвечал Илья, поразмыслив, — нам придется подставить в левую часть комплексное число (z+ iy), а затем посмотреть, что из этого выйдет. Получится, значит, так:
r = (х + iy)2 — 8(х + iy) + q= (x2 — y2— 8x + q) + i(2xy — 8y).
Мне кажется, что это выражение может оказаться действительным единственно только в том случае, если вся скобка, на которую умножается i, будет равна нулю.
— Так! — согласился Мнимий. — Верно. Это дело! А в каком случае так оно будет?
— Если, — отвечал мальчик, — я перепишу эту скобку немного иначе:
2ху — 8у = 2у (х — 4),
то ясно, что это может произойти только в двух случаях, либо игрек равен нулю (ну, тут все и так ясно, говорить нечего!), либо икс равен четырем.
— Хорошо! — сказал Мнимий, улыбаясь. — Теперь уж у нас все готово, и мы можем приступить к нашему волшебству, которое нам все и покажет в полной наглядности, как оно и полагается в нашем волшебном царстве, построенном на поучение самым любознательным и дерзновенным юношам…
— Дерзновенным! — с усмешкой повторил Радикс. — Но я слышал, как друг Пушкина, замечательный русский поэт и мыслитель Евгений Баратынский
А ведь так оно и полагается, дружище, в нашем светлом волшебном и вполне серьезном царстве для любознательных ребят!
— Ура! — закричал Илья. — Давайте ваше новое волшебство. Вы уж такие волшебники…
— Потише ты! — возразил Радикс. — Не спеши. Поспеешь!
Это будет штучка довольно затейливая. Начнем с того, что это новое волшебство будет не на плоскости, а в пространстве.
— В трехмерном? — робко пропищал Илья.
— Неужто тебе трехмерного мало? — свирепо огрызнулся Радикс. — Можно и четырехмерное, да ты испугаешься! Ну!
Смотри во все глаза.
Радикс медленно и важно махнул рукой. И тотчас же перед Илюшей возникла плоскость, где были начерчены обыкновенные декартовы координаты (икс, игрек, как оно и полагается!). Направо от начала координат была проведена еще одна пря-
— 420 —
мая, параллельная оси игрек, как раз в том самом месте, где икс равнялся четырем.
— Смекаешь? — спросил Радикс, указав Илье на эту четверку.
— Смекаю… — несмело откликнулся Илья, — то есть это та самая четверка, при которой моя скобка становится равной нулю? Так или нет?
— Именно! — отвечал ему его друг.
Смотри далее… Да смотри в оба! Полагаем твое q равным нулю… А теперь…
Тут Илюшина плоскость потихонечку повернулась и легла горизонтально, повиснув в воздухе примерно в сантиметрах шестидесяти от пола. Да так и застыла. Как только это произошло, из каждой точки креста, образованного осью иксов и новой прямой, которая пересекла ось иксов в точке, равной четырем, начали постепенно расти перпендикуляры к этой самой плоскости, которая и была плоскостью (х + iy), то есть плоскостью комплексных векторов (следи внимательней!).
И тут, опираясь на эти перпендикуляры и пересекая ось иксов (там, где игрек равен нулю), из концов этих перпендикуляров выросла парабола. Самая настоящая парабола с уравнением:
z = х2 — 8х.
А уравнение сейчас же засветилось справа сбоку красным огнем, чтобы Илья не путался! Затем (смотри хорошенько!) из прямой в новой вертикальной плоскости (опять же перпендикулярной к висящей в воздухе плоскости комплексных векторов) возникла еще одна парабола с уравнением:
z = 42 — у2 — 8 · 4 = — у2 — 16.
— 421 —
Теперь перед Илюшей было уже две параболы. Мнимий подошел совсем близко к этой высоковолшебной модели и мягким прикосновением своих волшебных пальчиков жестко скрепил эти две параболы так, что они оказались соединенными и своих вершинах, а плоскости их оказались перпендикулярными одна к другой.