Волшебный двурог
Шрифт:
Илюша пожал плечами.
— Тогда вот что, — сказал Мнимий Радиксович. — Может быть, в дальнейшем вы заглянете в учебник тригонометрии и узнаете, что разность квадратов косинуса и синуса есть косинус двойного угла , то есть угла, равного двум . А удвоенное произведение косинуса на синус есть аналогично синус угла двух . Если записать, то выйдет:
cos 2 = cos2 — sin2
sin 2 = 2 sin
Минуя некоторые длинные выкладки, сделаем такое общее заключение: возвести единичный вектор в степень n значит увеличить его угол в n раз. Вот что означает геометрически возведение единичного вектора в степень.
— Как будто, — сказал очень нерешительно Илюша, — я это где-то даже видел.
— Весьма вероятно! — подхватил Мнимий. — И увидите,
— 401 —
наверно, еще не раз. Это ведь не так трудно проверить. Допустим, что наш единичный вектор наклонен к положительному направлению действительной оси под углом в сорок пять градусов. Тогда его косинус, то есть его проекция на действительную ось, равен…
— … половине корня из двух. Такой же и синус будет.
— Давайте умножим такой вектор на самого себя.
Илюша взял мел и перемножил
— Получилось одно i, — сказал Илюша в некотором недоумении. — Что это за вектор, у которого только одно i осталось?
Затем Илюша внимательно посмотрел на чертеж.
— А-а! — сказал он. — Понял! Это единичный вектор, направленный прямо по мнимой оси. Единичный он потому, что около i стоит множителем единица. А так как мнимая ось перпендикулярна к действительной, то, значит, этот вектор образует с ней угол в девяносто градусов. И выходит, что действительно угол удвоился.
— А вектор?
— А вектор повернулся против часовой стрелки на сорок пять градусов. А если еще раз умножить? Можно, я попробую?
— Сделайте ваше одолжение! — отвечал Мнимий.
Илюша умножил еще раз. Вышло:
— Что-то я не пойму, — сказал Илюша.
Но на чертеже он увидел, что вектор повернулся теперь на 135° по отношению к положительному направлению действительной оси, и, следовательно, к 90° прибавилось еще 45°.
OA = 1;
AB = sin ;
OB = cos
— А ведь верно! — сказал Илюша.
—
— 402 —
решим обратную задачу. Что значит извлечь корень из комплексного числа? Поскольку возведение в степень и извлечение корня суть обратные действия, мы можем считать, что и в области комплексных чисел остается в силе определение корня как обратного действия. А если это так, то как теперь извлечь корень из единичного комплексного вектора?
— Мне кажется, что раз при возведении в степень углы умножаются, то, — продолжал Илюша, — это похоже на действия со степенями. А значит, при извлечении корня углы векторов делятся. Так?
— Молодчина! — отвечал Мнимий.
— Но только как же тогда я, извлекая из одного единственного i корень, получу такое выражение:
хотя как раз так и должно быть, потому что, когда я возводил это выражение в квадрат, то получил i?
— Очень просто, — сказал Мнимий, — стоит только эго «одно-единственное i» написать в виде комплексного числа:
0 + i · 1.
А это можно изобразить и так:
cos + i sin ,
то ясно, что равен девяноста градусам. Поделите пополам, и все будет в порядке. Заметьте кстати, дружок, что если вы еще раз возведете в квадрат, то как раз и получите:
i2 = cos 180° + i· sin 180°.
Наше чудесное равенство i2 = —1, таким образом, означает, что, повернув вектор дважды на прямой угол, вы повернете его в итоге на сто восемьдесят градусов, то есть переведете его в вектор противоположного направления. Но тут есть еще одно весьма важное обстоятельство. Ведь вы, наверно, помни-
— 403 —
те, что извлечение квадратного корня для вещественных чисел есть операция двузначная, то есть дает два ответа: один с плюсом, а другой с минусом. Как же это отразится в нашей комплексной области? Ясно, что если вектор повернется на целый круг, то он снова попадет на старое место…
Вектор немедленно плавно проплыл целый круг, двигаясь вперед против часовой стрелки, и застыл опять на старом месте. Постояв так минутку, он снова проплыл целый круг в том же направлении и снова остановился на старом месте. А затем повернулся так же еще в третий раз.