Чтение онлайн

на главную

Жанры

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

Глава 9

Космологическая задача

Величайшие теории XX века в физике – теория относительности, квантовая теория, стандартная модель – являют собой вершины этой науки. У них прекрасные математические выражения, позволяющие делать предсказания для экспериментов, которые подтверждались неоднократно и с высокой точностью. И все же они не могут претендовать на фундаментальность. Их расширение до описания всего мироздания затрудняет общая черта: каждая из указанных теорий делит мир на две части: первая с течением времени изменяется, а вторая предполагается неизменной. Первая часть – это изучаемая система, степени свободы которой меняются. Вторая соответствует остальной Вселенной, и мы можем назвать ее фоном для первой части.

Эта вторая часть не может быть описана, однако она неявно присутствует в условиях, которые придают смысл движению, описываемому в первой части. Измерение расстояний неявно подразумевает существование неподвижных точек отсчета и инструментов. Указание времени подразумевает

существование часов вне системы, в которой измеряется время.

В главе 3 мы обсуждали игру в мяч. Его положение приобретает смысл относительно положения в пространстве, где находится Дэнни. Движение определяется с помощью часов, которые, как предполагается, идут равномерно. И Дэнни, и часы находятся за пределами системы, описанной конфигурационным пространством, и, как предполагается, являются статическими. Без этих фиксированных точек отсчета мы не знали бы, как сравнить предсказания теории с данными эксперимента.

Деление мира на динамическую и статическую части – это фикция, но она очень полезна, когда речь идет о небольшой части Вселенной. Вторая часть, статическая, как предполагается, состоит из других динамических объектов за пределами системы. Игнорируя ее динамику и эволюцию, мы определяем рамки, в которых открываем для себя простые законы.

Для большинства теорий, кроме общей теории относительности (ОТО), статический фон включает геометрию пространства и времени, а также выбор законов, которые полагаются неизменными. Даже ОТО, в которой описывается динамическая геометрия, предполагает другие статические конструкции, например топологию и размерность пространства [63] .

63

Среди других структур с фиксированным фоном – геометрия пространства квантовых состояний (понятие расстояния в таком пространстве используется для определения вероятностей) и геометрия пространства для степеней свободы стандартной модели. Структуры, используемые в ОТО, включают дифференциальные структуры пространства-времени, а также нередко и геометрию асимптотических границ.

Это деление на динамическую часть и фон является неотъемлемой частью ньютоновой парадигмы. И оно же делает указанную парадигму непригодной для применения в масштабе Вселенной. Нет и не может быть статичной части, поскольку все во Вселенной меняется, и нет ничего вне ее, ничто не может служить фоном, на котором происходит измерение движения. Поиск способа преодоления этого барьера можно назвать космологической задачей. Она требует от нас теории, осмысленно применимой для описания всей Вселенной, теории, в которой динамический объект определяется через другие динамические объекты и где просто нет места статическому фону. Такие теории называются фононезависимыми [64] .

64

Термины “фонозависимый” и “фононезависимый” в случае квантовой теории гравитации имеют более узкое значение. В этом контексте фонозависимая теория предполагает фиксированный фон классического пространства-времени. Пертурбативные теории, такие как пертурбативная квантовая ОТО и пертурбативная теория струн, фонозависимы. Фононезависимые подходы к квантовой гравитации включают петлевую квантовую гравитацию, причинные множества, каузальную динамическую триангуляцию и теорию квантовых графов.

Мы видим, что космологическая дилемма встроена в ньютонову парадигму: то, что обеспечило успех теории на меньших масштабах (включая зависимость от статического фона и тот факт, что один и тот же закон имеет бесконечное количество решений), превращается в причину ее неприменимости как основы космологии.

Успех физики привел к первой попытке изучения космологии с научной точки зрения. Неудивительно, что один из способов разрешения космологической дилеммы заключается в признании того, что наша Вселенная – лишь экземпляр из обширной коллекции, потому что все наши теории можно применить лишь к частям значительно большей системы. Это, как я понимаю, определяет привлекательность сценариев с многочисленными вариантами Вселенных.

Когда мы проводим эксперимент, мы держим начальные условия эксперимента под контролем. Мы изменяем их для проверки гипотез. Но когда дело доходит до космологических наблюдений, выясняется, что начальные условия определены на ранней стадии образования Вселенной и мы должны принять в качестве гипотезы эти условия как данные. Чтобы объяснить результат космологических наблюдений в рамках ньютоновой парадигмы, мы выдвигаем две гипотезы: предполагаем, какими были начальные условия и какие законы действовали. Это ставит нас в гораздо более сложную ситуацию, чем та, с которой мы сталкиваемся, занимаясь физикой “в ящике”.

То, что мы должны и проверять гипотезы о законах природы, и контролировать начальные условия, сковывает нас. Если предсказания не согласуются с наблюдениями, есть два способа исправить теорию. Мы можем изменить гипотезу либо о законах, либо о начальных условиях. И то, и другое скажется на результате эксперимента.

Возникает проблема: откуда мы знаем, какая из двух гипотез нуждается в коррекции? Наблюдая за небольшой частью Вселенной (например, за звездой или галактикой), мы оцениваем справедливость закона исходя из многочисленных опытов. Все они служили проверке одного и того же закона, и любые различия между ними должны быть приписаны различиям в их начальных условиях. Но в случае Вселенной мы не в состоянии отличить влияние изменения гипотезы о законе от влияния изменения гипотезы о начальных условиях.

Эта проблема нередко возникает в космологических исследованиях. Серьезной проверкой теории ранней Вселенной явилось измерение структуры реликтового, или микроволнового фонового излучения (МФИ). Это изображение Вселенной около 400 тысяч лет после Большого взрыва. Наиболее изученной гипотезой в космологии является теория Большого взрыва и последующего расширения Вселенной, которая утверждает, что в самом начале истории Вселенная быстро расширялась. По мере расширения Вселенной стирались ее первоначальные черты, что привело к большой, сравнительно безликой Вселенной, которую мы наблюдаем. Инфляционная модель также предсказывает наличие структуры в МФИ, очень похожей на сегодняшнюю.

Несколько лет назад ученые сообщили, что обнаружили указания на новые неожиданные свойства МФИ – отклонение от формы распределения Гаусса, чего не предсказывает стандартная теория инфляции [65] . У нас два варианта объяснения этого нового наблюдения: мы можем изменить теорию или первоначальные условия. Теория инфляции Вселенной основана на ньютоновой парадигме, и ее предсказания зависят от начальных условий, на которые влияют законы природы. Через несколько дней после появления статьи, в которой были представлены доказательства отклонений от Гауссовой формы распределения, появились попытки их объяснить. Некоторые интерпретаторы пошли по пути изменения законов, другие модифицировали исходные условия. Обе стратегии успешно объяснили новые наблюдения. На самом деле успех любой из этих стратегий был предрешен [66] . Как обычно случается, дальнейшие наблюдения не подтвердили первоначальное заявление. Сейчас мы не знаем, есть ли в МФИ отклонения от формы распределения Гаусса [67] .

65

Yadav, Amit P. S., and Benjamin Wandelt Detection of Primordial Non-Gaussianity (fNL) in the WMAP 3-Year Data at Above 99.5 % Confidence // arXiv:0712.1148 [astro-ph], PRL100,181301, 2008.

66

Chen Xingang et al. Observational Signatures and Non-Gaussianities of General Single Field Inflation // arXiv: hep-th/0605045v4 (2008); Cheung, Clifford, et al. The Effective Field Theory of Inflation // arXiv.org/abs/0709.0293v2 [hep-th] (2008); Holman, R., and Andrew J. Tolley Enhanced Non-Gaussianity from Excited Initial States // arXiv:0710.1302v2 (2008).

67

Это не значит, что влияние начальных условий на МФИ нельзя отличить от изменений в инфляционной модели, по крайней мере, в рамках определенных классов моделей. См.: Agullo, Ivan, Navarro-Salas, Jose, and Leonard Parker arXiv:1112.1581v2. Благодарю М. Джонсона за обсуждение этого вопроса.

Мы рассмотрели пример с двумя различными способами привести теорию в соответствие с данными. Если мы считаем, что законы и начальные условия описаны с помощью некоторых параметров, то существует два набора параметров, посредством которых можно подогнать теорию. Такую ситуацию называют вырожденной. Обычно, когда есть вырождение, мы проводим дополнительные наблюдения, чтобы определить, какая из двух возможных поправок верна. Но в случае с реликтовым излучением, которое является следом события, произошедшего лишь однажды, мы, возможно, никогда не разрешим вырождение. Учитывая ограничения в измерении МФИ, вполне возможно, мы не сможем отделить объяснения на основе изменения законов от объяснений, основанных на модификации исходного состояния [68] . Однако без возможности отделить влияние законов от влияния начальных условий ньютонова парадигма теряет силу как метод, способный объяснять физические явления.

68

Уникальность Вселенной сводит на нет и другие попытки проверки теорий рождения Вселенной. В лабораторной физике мы всегда имеем дело с шумом, возникающим из-за статистических неопределенностей в данных. Зачастую он может быть уменьшен путем множества измерений, потому что влияние случайного шума уменьшается с увеличением числа испытаний. Так как Вселенная уникальна, невозможно таким образом сократить ошибки некоторых космологических наблюдений. Эти статистические неопределенности известны как космическая дисперсия.

Поделиться:
Популярные книги

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Кодекс Охотника. Книга XXVI

Винокуров Юрий
26. Кодекс Охотника
Фантастика:
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXVI

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попутчики

Страйк Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попутчики

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Польская партия

Ланцов Михаил Алексеевич
3. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Польская партия

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2