Возвращение времени. От античной космогонии к космологии будущего
Шрифт:
Мы готовы пересмотреть предположения, которыми руководствовались физики со времен Ньютона. Прежде мы думали, что такие теории, как механика Ньютона или квантовая механика, годятся на роль фундаментальной теории (если бы ее удалось построить), идеального зеркала мироздания, так что все явления соответствовали бы посредством математики этой фундаментальной теории. Сама структура ньютоновой парадигмы, основанной на вневременных законах, действующих во вневременном пространстве конфигураций, считалась необходимым элементом этого построения. Я утверждаю, что эта метафизическая фантазия гарантированно приведет нас к путанице, лишь только мы попытаемся применить ее ко всей Вселенной. Эта позиция требует повторной оценки состояния теорий
1) Все теории, с которыми мы работаем (в том числе стандартная модель физики элементарных частиц и ОТО), приблизительны. Они применимы в ограниченных областях, которые включают лишь часть имеющихся во Вселенной степеней свободы. Мы называем такие теории эффективными.
2) Во всех экспериментах и наблюдениях, связанных с ограниченными областями, мы записываем значения лишь малого подмножества имеющихся степеней свободы, пренебрегая остальными. Данные сравниваются с предсказаниями эффективных теорий.
Успех современной физики целиком основан на исследовании свойств ограниченных областей природы, которые моделируются с помощью эффективных теорий. Искусство физика-экспериментатора заключается в постановке экспериментов, позволяющих выделить и изучить лишь несколько степеней свободы, пренебрегая остальной Вселенной. Теоретики нацелены на создание эффективных теорий, позволяющих моделировать ограниченные области, которые исследуют экспериментаторы. Никогда прежде у нас не было возможности сравнить предсказания кандидатов на роль действительно фундаментальной теории (я имею в виду такую теорию, которая не может быть понята как эффективная) с экспериментом.
Экспериментальная физика изучает ограниченную область природы. Подсистема, которая моделируется в предположении, как если бы она была единственной во Вселенной, называется замкнутой системой. Но не стоит забывать, что в отрыве от целого никогда не бывает полного. В мире всегда есть взаимодействие между любой подсистемой и объектами за ее пределами. Любые подсистемы Вселенной – в той или иной степени открытые, то есть ограниченные, системы, взаимодействующие с объектами за их пределами. Занимаясь физикой “в ящике”, мы аппроксимируем открытую систему замкнутой.
Экспериментальная физика большей частью состоит из преобразования открытых систем в приблизительно замкнутые. Мы никогда не сможем сделать это точно хотя бы потому, что, проводя измерения системы, вторгаемся в нее. (Это проблема в интерпретации квантовой механики, но сейчас давайте придерживаться макромира.) Каждый эксперимент есть борьба за данные, которые вы желаете извлечь, очистив их от неизбежного фона, приходящего из-за пределов не полностью замкнутой системы. Экспериментаторы тратят немало сил, убеждая себя и коллег в том, что они видят выделенный сигнал и что они сделали все, чтобы уменьшить влияние паразитных эффектов.
Мы экранируем эксперименты от посторонних вибраций, полей и излучений. Для многих экспериментов этого достаточно, но некоторые настолько чувствительны, что должны быть защищены даже от прохождения космических лучей сквозь детектор. Чтобы защитить от них лабораторию, можно перенести ее в шахту, на несколько миль под землю. Так мы поступаем, проводя измерения нейтрино Солнца. Это снижает фон других излучений до приемлемого уровня, позволяющего регистрировать редкие нейтрино. Но нет способа изолировать лабораторию от самих нейтрино. Детекторы, погруженные глубоко под лед на Южном полюсе, регистрируют нейтрино, которые вошли в Землю в районе Северного полюса и прошли сквозь планету.
Даже если построить астрономически толстый экран для нейтрино, есть нечто, что пробьется сквозь экран. Это гравитация. В принципе, ничто не может ее экранировать или остановить распространение гравитационных волн, поэтому ничто не может быть абсолютно изолированным. Я понял это, когда работал над диссертацией. Я строил модель ящика с гравитационными волнами, отражавшимися от стенок, но все мои модели оказались нерабочими, поскольку гравитационные волны проходили сквозь стенки. Я пробовал увеличить удельную плотность материала, но прежде чем модель приблизилась к состоянию, при котором стенки начали отражать гравитационное излучение, она коллапсировала в черную дыру. Я долго ломал голову, а потом понял: проблема, которую я не мог решить, гораздо интереснее построения модели. Мне удалось показать, что стенки, какой бы толщины и плотности они ни были, не отразят гравитационные волны [69] . Чтобы прийти к этому, я должен был принять за основу лишь утверждения общей теории относительности о том, что энергия в веществе всегда положительна, а звук не может распространяться быстрее света. Это значит, что нет системы, изолированной от Вселенной. Стоило бы возвести это в принцип (я буду называть его принципом несуществования замкнутых систем).
69
Smolin, Lee The Thermodynamics of Gravitational Radiation // Gen. Rel. & Grav. 16:3, 205–210 (1984); Smolin, Lee On the Intrinsic Entropy of the Gravitational Field // Gen. Rel. & Grav. 17:5, 417–437 (1985).
Есть и другая причина, в силу которой моделирование открытой системы как замкнутой – всегда приближение. Мы не в состоянии предвидеть случайное разрушительное вмешательство в систему извне. Мы можем измерять, предсказывать и подавлять фон. Но внешний мир может перечеркнуть попытки изоляции. Самолет может врезаться в здание, где располагается лаборатория. Ее может разрушить землетрясение. С Землей может столкнуться астероид. Облако темной материи может пройти сквозь Солнечную систему, нарушив орбиту Земли и столкнув ее с Солнцем [70] . Или кто-нибудь щелкнет выключателем в подвале и обесточит лабораторию. Список того, что может сорвать эксперимент, практически бесконечен. Когда мы моделируем эксперимент, как если бы имели дело с замкнутой системой, мы исключаем из модели все эти возможности.
70
Может быть, нам помешает фазовый переход, который случится, когда ложный вакуум, в котором мы живем, распадется. См.: Coleman, Sidney, and Frank de Luccia Gravitational Effects on and of Vacuum Decay // Phys. Rev. D 21:12, 3305–3315 (1980).
Чтобы включить все, что может помешать эксперименту, потребуется модель Вселенной в целом. Но мы не сможем проводить физические опыты, не исключив все эти возможности из моделей и расчетов. Однако исключая их, мы в принципе основываем физику на приближениях.
Основные теории моделируют части природы, “вырезанные” экспериментаторами из мира. Возможно, когда они были предложены, они представлялись фундаментальными, но со временем теоретики пришли к заключению, что они лишь эффективное средство описания ограниченного числа степеней свободы.
Физика частиц – хороший пример эффективной теории. Эксперименты до сих пор исследовали фундаментальные свойства природы лишь до определенного масштаба. После измерений на Большом адронном коллайдере в ЦЕРНе этот масштаб – около 10–17 см. Значит, стандартная модель физики элементарных частиц (СМ), которая хорошо согласуется с известными экспериментальными данными, должна рассматриваться в качестве приближения. Кроме того, эта модель не учитывает гравитацию. Она не рассматривает неизвестные пока явления, которые могут проявиться на еще более коротких расстояниях.