Чтение онлайн

на главную

Жанры

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

То, что траектория падающего тела описывается параболой – одно из самых замечательных открытий, сделанных учеными. Падает все – и одинаково. Не имеет значения, из чего и для чего предмет, а также сколько раз, с какой высоты и с какой скоростью мы его бросаем. Мы можем повторять эксперимент сколько душе угодно, и всякий раз предмет будет двигаться по параболе. Эта кривая (все точки плоскости, равноудаленные от данной прямой и данной точки) – одна из самых простых в математике.

Рис. 1. Парабола – это геометрическое место точек, равноудаленных от данной

прямой и данной точки.

Парабола была известна математикам задолго до Галилея. Наблюдение, что падающие тела описывают параболу – один из первых примеров закона природы, то есть регулярного поведения в небольшой части Вселенной. (В данном случае частью Вселенной – ее подсистемой – является сам предмет, падающий вблизи поверхности планеты.) Такое случалось огромное количество раз в разных местах со времен рождения Вселенной. Следовательно, есть множество ситуаций, к которым применим этот закон.

Подросший ребенок может спросить: “А о чем это говорит? Почему математический объект, плод нашего воображения, имеет нечто общее с природным явлением? И почему такое распространенное явление, как падение, должно иметь самое простое и красивое во всей геометрии описание?”

Со времен Галилея ученые успешно пользуются математикой для описания физических явлений. Сейчас очевидно, что законы физики выражаются на языке математики, однако две тысячи лет (с тех пор, как Евклид сформулировал свои аксиомы) никто не догадывался применить математический закон к описанию движения на Земле. С античности до XVII века ученые знали о параболе, но ни один из них не пожелал выяснить, по какой траектории летит брошенный мячик, выпущенная стрела или любой другой предмет [15] . Каждый ученый мог сделать открытие, которое сделал Галилей: все, что ему для этого понадобилось, существовало уже в Афинах времен Платона и в Александрии времен Гипатии.

15

И это несмотря на многочисленные попытки исламских и средневековых философов понять причины движения.

Что заставило Галилея применить математику для описания падения тел? Это вопрос из тех, которые легко задать, но на которые трудно ответить. Что такое вообще математика? Как она стала наукой?

Математические объекты – плоды чистого мышления. Мы не найдем параболу в природе. Парабола, окружность или прямая, – это идеи. Мы облекаем их в определения: “Окружность – геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки. Парабола – все точки плоскости, равноудаленные от данной прямой и данной точки”. Раз у нас есть определение, мы можем определить свойства кривой. В школе нас учили, что такой вывод может быть формализован и представлять собой доказательство – выстроенные в цепь умозаключения. В этом формальном процессе не остается места наблюдению или измерению [16] .

16

Математики говорят о кривых, числах и так далее как о математических “объектах”, что предполагает их своего рода существование. Вам, возможно, будет удобнее называть их “понятиями”. Я буду использовать оба этих слова.

Рисунок может иллюстрировать доказанные свойства, но он всегда неточен. Это верно и для знакомых нам кривых: для спины потягивающейся кошки или тросов, на которых подвешен мост. Это лишь приблизительно напоминает математические кривые, и, если приглядеться, мы всегда найдем отклонения от идеальных математических форм. Итак, математика рассматривает нереальные объекты, которые, тем не менее, отражают реальный мир. Каким образом? Отношение между реальным миром и миром математики неочевидно даже в простейших случаях.

Что общего у математики и гравитации? Математика играет в разгадке тайны времени роль не меньшую, чем гравитация, и следует знать, как математика соотносится с природой в случае падающих тел. Иначе, когда слышишь утверждение типа: “Вселенная – четырехмерное пространственно-временное многообразие”, ты становишься добычей мистификаторов, которые преподносят метафизические фантазии под научным соусом.

Несмотря на то, что в природе не встречаются идеальные окружности или параболы, у них есть общее с материальными объектами свойство: устойчивость по отношению к манипуляциям. Число – отношение длины окружности к ее диаметру – это идея. Но только лишь идея была высказана, как значение стало объективным. Были попытки узаконить значение, и они продемонстрировали наше глубокое непонимание. Мы не можем изменить значение, как бы нам ни хотелось. То же верно для свойств кривых, да и любого математического объекта.

Но кривые и числа (даже если они сходны с природными объектами тем, что не зависят от наших желаний) не идентичны природе. В реальном мире всегда присутствует время. Все в потоке времени. Каждое сделанное нами наблюдение имеет временную отметку. Мы и все вещи вокруг нас существуют в течение определенного временного интервала и не существуют до и после него.

Математические объекты вне времени. Число не имеет даты рождения, прежде которой оно не существовало или принимало другое значение. Утверждение Евклида о том, что параллельные линии на плоскости не пересекаются, всегда останется верным. Математические утверждения касательно кривых или чисел не требуют временных характеристик. Но как нечто может существовать вне времени? [17]

17

Не совсем верно говорить, будто математическая истина вне времени: ощущения и мысли приходят в определенные моменты времени, и мы думаем (во времени), кроме прочего, и о математических объектах. Сами по себе они во времени не существуют. Они не рождаются, они не изменяются – они просто есть.

Тысячелетиями люди спорят об этом и не пришли к единому мнению. Но одно предположение существует очень давно: математические объекты существуют вне нашего мира, в другой реальности. Таким образом, существует не два типа объектов, связанных со временем и вечных, а два мира: связанный с временем и вечный.

Представление о том, что математические объекты существуют в ином мире, приписывают Платону. Он учил, что математик, говорящий о треугольнике, говорит об идеальном треугольнике: в той же степени реальном, но существующем в ином мире – вне времени. Теорема о сумме углов треугольника, равной 180°, не выполняется точно для любого реального треугольника, но абсолютно верна для идеального треугольника. Когда мы доказываем теорему, мы узнаем о том, что вне времени, и показываем, что теорема была верна в прошлом и будет верна в будущем. Если Платон прав, то мы можем, рассуждая, узнавать вечные истины. Некоторые математики утверждают, что черпают знания из идеального мира.

Когда я желаю вкусить платонизма, я приглашаю на обед своего друга Джима Брауна. Мы оба любим вкусно поесть, и во время еды он не спеша и уже в который раз рассказывает мне о своей вере в мир математики, существующий вне времени. Джим – не обычный философ. Его острый ум сочетается с веселым нравом. Вы сразу чувствуете, что он счастлив, и само знакомство с ним делает вас счастливым. Он прекрасно знает все доводы за и против платонизма и охотно обсуждает те, которые не может опровергнуть. Но я так и не смог пошатнуть его веру в существование вневременного мира математических объектов. Я иногда спрашиваю себя: уж не вера ли в идеальный мир делает Джима счастливым?

Лишь один вопрос ставит в тупик Джима и других поклонников Платона. Как мы – привязанные ко времени и находящиеся в постоянном контакте с другими объектами мира вещей – можем узнать об устройстве вечного мира математики? Мы проникаем в него путем рассуждений, но можем ли мы быть уверены, что эти рассуждения верны? По сути нет. Время от времени мы обнаруживаем ошибки даже в доказательствах теорем в учебниках, и нет сомнений, что там скрывается еще множество ошибок. Эту проблему можно решить, предположив, что математические объекты не существуют вовсе – даже вне времени. Но тогда какой смысл рассуждать о несуществующем?

Поделиться:
Популярные книги

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Проклятый Лекарь V

Скабер Артемий
5. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь V

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Шестое правило дворянина

Герда Александр
6. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Шестое правило дворянина

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Ох уж этот Мин Джин Хо 1

Кронос Александр
1. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 1

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя