Чтение онлайн

на главную - закладки

Жанры

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Шрифт:

Рис. 2.5. Луноход «Юйту-2» на обратной стороне Луны. И его, и Землю постоянно видит ретрансляционный спутник, находящийся вблизи точки Лагранжа L2 системы Земля – Луна

Дело в том, что с точками Лагранжа все-таки есть проблема: L1, L2 и L3 неустойчивы [30] . Карандаш может некоторое время стоять вертикально на вашем столе, но рано или поздно упадет по той или иной причине, например если вы откроете окно или из-за какой-то еще флуктуации. Для космического аппарата, помещенного в точку Лагранжа, причин для подобных флуктуаций – нарушений точного баланса положения, скорости и сил притяжения – хоть отбавляй (притяжение других тел в Солнечной системе оказывает воздействие, орбиты отличаются от круговых, скорость оказывается не идеально точной для пребывания в точке Лагранжа и т. д.). В результате аппарат начинает «сползать» – удаляться от математически определенной точки Лагранжа. Хотя события и будут развиваться намного медленнее, чем при опрокидывании карандаша, неустойчивость означает, что по мере сползания на космический аппарат действуют силы, уводящие его только дальше [31] . Поэтому начавшееся по любой причине сползание не исправится

само; если там оказался астероид, то он со временем сдвинется куда-то прочь, а если мы (или инопланетяне) желаем, чтобы там оставалось какое-то устройство, то потребуются включения корректирующего двигателя. Да, некоторое количество топлива тратится, но очень небольшое – именно из-за того, что дело происходит вблизи точки равновесия с достаточно вяло проявляющей себя неустойчивостью. Космический аппарат, который время от времени заботится о своем положении, может поэтому описывать вокруг точки Лагранжа что-то вроде орбиты, но это орбита не в кеплеровском смысле, поскольку в сторону самой точки Лагранжа нет силы притяжения, а скорее контролируемый дрейф – сначала сползание в одну сторону, затем короткое включение двигателя для изменения направления движения, последующее сползание в несколько иную сторону и так далее. Китайский ретрансляционный спутник летал вокруг L2 по такой орбите, чтобы Луна не загораживала ему вид на Землю. При взгляде с Земли эта орбита проходит снаружи от лунного диска, нигде не заходя за него, – как «гало» вокруг Луны. Поэтому такие орбиты иногда называют гало-орбитами.

30

Это жаргон, которому непросто сопротивляться. Имеется в виду неустойчивость орбиты тела, помещенного в точку Лагранжа, – но изъясняться каждый раз с такими подробностями едва ли возможно.

31

Пример обратной ситуации: шкаф, стоящий в вашей комнате, надо надеяться, устойчив, потому что малые наклоны не приводят к его опрокидыванию, наоборот – шкаф возвращается в исходное положение. Легкость «сваливания» из точки Лагранжа зависит от направления: при сдвиге в некоторых направлениях даже возникает сила, возвращающая тело к точке Лагранжа, но при этом сдвиг в любом другом направлении неизбежно ведет к сваливанию. Картина хорошо описывается термином «седловина»: высыпанная на седловую поверхность крупа скатится вниз не по всем направлениям, но при небольшой встряске в конце концов упадет вся.

Вариация на тему гало-орбит предполагается и для Лунной орбитальной платформы (Lunar Gateway) – международной космической станции «вблизи» Луны, создание которой планируется при ведущей роли NASA. Станция должна находиться на вытянутой гало-орбите, «чувствительной» к наличию обеих точек Лагранжа L1 и L2, с максимальным приближением к поверхности Луны на 3000 км (что несколько меньше диаметра Луны) и максимальным удалением 70 000 км. Станция будет приближаться к Луне над ее северным полюсом, а уходить далеко – над южным, что на взгляд с Земли можно изображать как под южным: орбита «свисает вниз», почти перпендикулярно плоскости, в которой сама Луна обращается вокруг Земли, и уходя сильно ниже этой плоскости. Это одна из южных орбит в отношении Луны, южный полюс которой тоже «смотрит вниз», и в течение почти всего времени, за исключением коротких периодов прохода над северным полюсом, станция будет находиться в прямой (радио)видимости от предполагаемого места высадки на Луну вблизи ее южного полюса. Для периодических «исправлений» орбиты потребуются включения двигателя, сообщающие станции суммарное изменение скорости всего на 10 м/с за год.

Рис. 2.6. Траектория аппарата «Спектр-РГ», работающего вблизи точки Лагранжа L2 системы Солнце – Земля, данные ИПМ им. М. В. Келдыша РАН [25]

Если говорить про систему Солнце – Земля, то окрестности точки L2 оказываются идеальной «движущейся парковкой» – площадкой для астрономических наблюдений. Эта точка Лагранжа расположена на расстоянии 1,5 млн км от Земли – что в сто раз меньше расстояния от Земли до Солнца, но все же в четыре раза дальше, чем находится от нас Луна. Именно из L2 системы Солнце – Земля изучали реликтовое излучение (космический микроволновой фон) аппараты WMAP и «Планк» [32] . Относительно недавно там же поселился и «Спектр-РГ» – российско-германская астрофизическая обсерватория; аппарат, запущенный в июле 2019 г., за 100 дней добрался до окрестностей L2, а к середине апреля 2020 г. выполнил один оборот по орбите, которая проходит на расстоянии до 400 000 км от L2, перпендикулярно линии Солнце – Земля (рис. 2.6). Контроль за дрейфом в сторону от точки Лагранжа требует краткосрочных включений двигателя каждые 40–70 дней. В результате космический аппарат будет делать что-то вроде полного оборота в течение примерно полугода, поднимаясь над плоскостью земной орбиты и опускаясь под нее; траектория образует не очень аккуратный «моток» вокруг L2, мало похожий на строгий и совершенный эллипс [33] .

32

Аппараты WMAP (NASA, 2001–2009) и «Планк» (Европейское космическое агентство ESA, 2009–2013) собрали фундаментальные данные о развитии Вселенной, сделав фактически «фотографию» ранней Вселенной, только-только остывшей до 3000 К, из-за чего электроны смогли удерживаться в атомах, а свет наконец смог распространяться. Мир не содержал тогда элементов тяжелее лития и ни единой звезды. Детали, которые испущенный в то время свет донес до космических аппаратов, выражаются в относительных вариациях в интенсивности величиной в несколько миллионных долей. Чтобы проводить измерения с такой чувствительностью, требовались тщательно продуманные условия.

33

Задачи аппарата «Спектр-РГ» – картирование Вселенной в рентгеновском диапазоне, наблюдение скоплений галактик и центральных черных дыр в галактиках, звезд и белых карликов, испускающих рентгеновское излучение. Возможности обсерватории должны существенно уточнить наше понимание эволюции Вселенной.

Туда же, в окрестность точки L2 системы Солнце – Земля, в январе 2022 г. добрался преемник знаменитого космического телескопа «Хаббл» – JWST [34] . Его задачи – наблюдать самые далекие от нас объекты во Вселенной (интересные нам в первую очередь из-за эффекта «машины времени», который мы обсуждаем на прогулке 5), следить за формированием звезд и планет, а также получать прямые изображения планет (и отдельно – взрывающихся звезд). Телескоп требуется держать очень холодным, и совокупность предъявляемых требований и определила положение для его устойчивого размещения внутри «круговорота» Солнечной системы. Для него выбрана гало-орбита, проходящая на расстоянии от 250 000 до 832 000 км от точки L2. Чтобы его солнечные батареи постоянно освещались, аппарат не должен попадать в тень, отбрасываемую Землей. При этом, однако, давление солнечного света на щит, защищающий телескоп от нагревания Солнцем, становится фактором воздействия, уводящим аппарат в сторону. Телескоп будет подправлять свое положение каждые три недели. Суммарное годовое изменение скорости, которое необходимо обеспечить, включая двигатель, составит от 2 до 4 м/с. Это чепуховые поправки по сравнению со скоростью движения самой L2 вокруг Солнца, которая близка к скорости Земли в 30 000 м/с, и их малость определяется именно близостью аппарата к точке Лагранжа. То же самое верно, конечно, и в отношении аппаратов, наблюдающих за Солнцем и солнечным ветром «из точки» L1: ценой очень скромных затрат топлива они описывают вокруг этой точки Лагранжа несколько нерегулярные орбиты с характерными радиусами в несколько сотен тысяч километров.

34

James Webb Space Telescope, разработка NASA с участием ESA и Канадского космического агентства.

*****

Греки и троянцы. Лагранж умер за 144 года до запуска первого искусственного спутника Земли, и не исключено, что он рассматривал пять специальных точек в системе двух тел как (всего лишь) математическое упражнение. Но нам, забравшимся на плечи гигантов, теперь видно, что интересная математика, возникающая при описании какой-либо реальной физической системы, – это почти гарантия обнаружения физического эффекта, в котором математическая достопримечательность тем или иным способом себя проявляет. И действительно, спустя более столетия после рассуждений Лагранжа астрономы начали открывать троянцев!

Если для замышляющих что-то зеленых человечков точки Лагранжа – это хорошие места для парковки, то для космических обломков и мусора точки L4 и L5 оказываются тихими закутками, где они оседают. В этих точках Лагранжа собираются астероиды, потому что там иная картина с устойчивостью, чем в трех других точках Лагранжа. С первого взгляда, правда, ситуация даже хуже, потому что баланс сил притяжения таков, что при выходе из точки Лагранжа в любом направлении возникает сила, которая побуждает уходить дальше. Но это только если смотреть на то, как работают силы притяжения. Кроме притяжения, в дело вступает движение. Сама точка Лагранжа движется по окружности, а в этом случае есть вот какая новость: при движении относительно вращающейся системы тело испытывает действие дополнительной силы [35] . Это не совсем обычная сила, потому что у нее нет физического источника, она ощущается только во вращающейся системе и связана с довольно простым обстоятельством: если вы уже стоите на вращающейся карусели-платформе, то, значит, вы приобрели ту же скорость, что и пол у вас под ногами. Но разные участки пола движутся с разными скоростями! Те, которые близко к центру, движутся медленно, а те, что у края, – быстро или очень быстро. Когда вы начнете двигаться – скажем, захотите перейти от края карусели к центру, – вы обнаружите, что, делая каждый следующий шаг, вы ставите ногу на участок пола, движущийся медленнее, чем тот, где вы только что находились. В вашем восприятии это будет выражаться в некоторой силе, действующей на вас со стороны пола и направленной поперек вашего движения. То же самое происходит в «гравитационной карусели» в окрестности (для определенности) точки L4: по мере удаления от L4 уходящее тело набирает скорость относительно этой точки Лагранжа. Но, поскольку все происходит во вращающейся системе, движущееся тело испытывает дополнительное воздействие по мере набора скорости. Результат оказывается приятным сюрпризом: баланс всех факторов в окрестности L4 таков, что при развитии сползания тело не уходит прочь, а, набрав некоторую скорость, отправляется по орбите вокруг точки L4. Все то же самое происходит и в окрестности L5. Точки L4 и L5 оказываются устойчивыми, если, как показывает математика, более массивное из двух больших тел тяжелее другого в

раза или больше. Это условие выполнено для пары Земля – Луна и с большим запасом выполнено для всех пар Солнце – планета.

35

Она называется силой Кориолиса; я произношу фамилию Кориолис с ударением на последнем слоге, но не знаю, правильно ли это.

Рис. 2.7. Земля и Юпитер, если бы они могли оказаться рядом

Раз оказавшись вблизи L4 или L5 в системе Солнце – планета, астероиды имеют тенденцию там и оставаться. Сильнее всего этот эффект проявляется, разумеется, в самой гравитационно сильной паре тел в Солнечной системе. Это Солнце и Юпитер (который в 317 раз массивнее Земли; рис. 2.7). В точках Лагранжа L4 и L5 системы Солнце – Юпитер собралось, по оценкам, около 1 млн астероидов, превышающих 1 км в диаметре (возможно, примерно столько же, сколько их в поясе астероидов между Марсом и Юпитером). Они названы именами участников Троянской войны и даже разбиты по лагерям:

L4. Это лагерь греков. Застрявшие там астероиды носят, в частности, имена (начиная с тех, которые должны звучать хоть сколько-нибудь знакомо, если никуда не подглядывать): Ахилл, Нестор, Агамемнон, Одиссей, Аякс, Менелай, Филоктет, Неоптолем; а еще – Идоменей, Протесилай, Талфибий, Менесфей, Подалирий и многие другие. Но там же и Гектор – астероид, названный именем жителя Трои еще до того, как пробила себе дорогу идея номенклатурного разделения этих небесных тел на два враждующих лагеря, между которыми лежит треть орбиты Юпитера (больше полутора миллиардов километров).

L5. Здесь совсем другая картина – это лагерь защитников Трои. Среди прочих тут обитают Приам, Эней, Главк, Сарпедон, Лаокоон, Парис, если снова начинать со знакомо звучащих имен, а кроме того, Алкафой, Пандар, Пулидам, Ифидам, Сергест, Астеропей и еще многие. Единство защитников Илиона тоже нарушено, еще до появления коня: к ним присоединился Патрокл.

Рис. 2.8. Греки и троянцы по две стороны от Юпитера. Их разделяет расстояние, равное примерно десяти расстояниям от Земли до Солнца. Ближе к Солнцу, внутри орбиты Юпитера находится главный пояс астероидов

Гектор и Патрокл. Пребывание Гектора и Патрокла в «чужих» станах в парадоксальном смысле логично: именно Гектор убил Патрокла («Нет великого Патрокла! Жив презрительный Терсит!»), и только поэтому Ахилл вернулся на поле боя – где и сразил Гектора [36] .

Разумеется, ни греки, ни троянцы не сосредоточены все в одной точке, а занимают некоторый участок вдоль траектории Юпитера. Происходит все это довольно далеко от Земли (рис. 2.8), поэтому открыты они были совсем не сразу. Слово «троянцы» используют также в отношении астероидов, скапливающихся вблизи точек L4 и L5 других пар Солнце – планета; поскольку Солнце – это всегда Солнце, говорят просто о троянцах, например, Нептуна или Сатурна. Слово относится и к опережающим, и к отстающим; одного эпизода Троянской войны на Солнечную систему достаточно.

36

У Жуковского, переводившего поэму Шиллера, «презрительный» означает «презренный» или «презираемый»:

Скольких бодрых жизнь поблекла!Скольких низких рок щадит!Нет великого Патрокла!Жив презрительный Терсит!
Поделиться:
Популярные книги

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V

Старатель

Лей Влад
1. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки