Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности
Шрифт:
Мы не собираемся отстаивать общую теорию относительности только потому, что это любимое детище Эйнштейна. Он много в чем ошибался [137] . С другой стороны, общая теория относительности крайне «элегантна», а на жаргоне физиков это означает, что поскольку уравнения так просты, трудно представить себе, что они неверны. А принять MOND в ее нынешнем виде нам трудно, поскольку она предлагает вместо одной необъяснимой константы (количество темной материи) другую (масштаб, на котором гравитация из «нормальной» становится «модифицированной»).
137
Вспомните, например, ЭПР-парадокс из главы 3. И, несмотря на все его предостережения, мужчины до сих пор носят штаны.
Хуже
Но и это еще не все! Наблюдения некоторых звездных скоплений, в частности скопления «Пуля», при помощи метода гравитационных линз недвусмысленно показывают, что существуют крупные объемы материи, никак не связанные ни со звездами, ни с газом. Наблюдения далеких сверхновых доказывают, что темпы расширения Вселенной меняются со временем, намекая на то, что материи в ней гораздо больше, чем объясняет наличие одной только барионной материи. Наконец, все свидетельствует о том, что с космологической точки зрения Вселенная плоская – что, в свою очередь, лишний раз подтверждает, что 85 % массы Вселенной – темная.
Мы готовы поставить все наши деньги за то, что существует частица, на которой ясно написано «темная материя», – частица, которая, как сказали бы французы, станет le fin du MOND – «концом света».
Чем не может быть темная материя?
Примем за данность, что темная материя существует, но умеет ловко прятаться. Хотя мы еще не знаем, что такое темная материя, мы кое-что знаем о том, чем она быть не может. Заряда у нее нет, иначе она бы взаимодействовала со светом. Кроме того, это означает, что ее нельзя ощутить. Все, что вам случалось трогать, как-то «ощущается», поскольку электрические поля вашей руки отталкиваются от электрических полей всего того, что вы пытаетесь потрогать. Если нет электрического поля, ваша рука пройдет сквозь предмет, а вы ничего и не заметите.
В стандартной модели физики имеется лишь две известные частицы, которые можно подозревать в причастности к темной материи, – нейтрино и нейтрон. К сожалению, нейтрино обладает слишком маленькой массой, а одинокие нейтроны распадаются минут через десять. Поскольку Вселенная несколько старше, нейтроны – не совсем то, что мы ищем. Может показаться, будто на данный момент у нас нет верного кандидата, но не надо забывать, что физики необычайно хитроумны, и хотя пока что налицо дефицит частиц темной материи, нет никаких причин полагать, что мы ничего не придумаем [138] . В число частиц-подозреваемых вошли аксионы, миниатюрные черные дыры, монополи Дирака, крупицы кварков (quark nuggets) и многие другие. Некоторых подозреваемых, например черные дыры или монополи Дирака, оправдали на основании наблюдательных и экспериментальных данных, но подтвердить обвинение в темных делишках еще ни разу не удалось – даже отдаленно.
138
Открыть новую частицу не так просто, как нарисовать кружочек на клеенке, на которой остались следы от чашек с кофе. Физики-теоретики годы напролет изучают симметрии, организуют эксперименты в ускорителях стоимостью миллионы долларов и в конце концов рисуют кружочки на салфетках, облитых шампанским на банкете по случаю получения Нобелевки.
Однако многие физики-ядерщики полагают, что во Вселенной существуют так называемые WIMP – причем в огромных количествах. Слово wimp означает «нытик», но наши WIMP – это вовсе не жертвы школьной травли с вечно хлюпающими носами и бесперебойные источники карманных денег, а Weakly Interacting Massive Particles, то есть массивные частицы слабого взаимодействия; в очередной раз название описывает все то, что мы и так не знаем. Темная материя, конечно, обладает массой, а поскольку она не участвует в сильном и электромагнитном взаимодействии, то резонно предположить, что она участвует в слабом [139] .
139
Мы
Итак, WIMP – хорошее название в том смысле, что оно описательное, но плохое в том смысле, что оно нам почти ничего не говорит. Перед теоретической физикой стоит задача предсказать, что такое WIMP. В нашем случае предсказать означает не просто заявить, что они существуют. Хорошая теория должна рассказать, какая у WIMP масса, с какими частицами и как часто они взаимодействуют, когда и как образовались.
Суперсимметрия
Фаворит наших гонок на звание WIMP следует традиции, согласно которой физики выдумывают частицы, очень похожие на другие частицы. Классический пример – нейтрон. До 1920 года наука знала всего две «фундаментальные» частицы – протон, носитель положительного заряда, и электрон, заряженный отрицательно. В то время ученые могли измерить характеристики атомных ядер, и водород, например, обладал зарядом +1, а гелий – +2. «Очевидный» вывод (основанный на данных химии) гласил, что водород состоит из одного протона, а гелий – из двух, и если бы это было так, то гелий был бы вдвое массивнее водорода. А на самом деле гелий массивнее водорода в четыре раза.
Обширный опыт изучения естественных наук позволил Эрнесту Резерфорду сделать блестящее умозаключение, что четыре больше двух. Он предсказал существование электрически нейтральной частицы, обладающей примерно той же массой, что и протон, и впоследствии эта частица получила название «нейтрон». Нам-то теперь кажется, будто все очевидно, но на самом деле это было смелое заявление. Нейтрон, подобно темной материи, не взаимодействует со светом, а значит, увидеть его нельзя. Лишь спустя 12 лет Джеймс Чедвик наконец пронаблюдал нейтрон в лабораторных условиях – и оказалось, что эта частица обладает именно теми качествами, которые предсказал Резерфорд.
Как видите, история знает много случаев, когда выдающиеся открытия начинались с того, что физики говорили: «Гм… Если бы у нас была частица, которая выглядела бы почти как вот эта, все бы замечательно сошлось с ответом… А вдруг существует неуловимая частица – и хотя мы ее почему-то не видим, она должна быть вот такой и вот такой». Такой подход, как в случае с нейтроном Резерфорда, иногда выявляет новые частицы, которые значительно упрощают картину [140] .
Физики любят симметрию, в чем мы с неудовольствием убедились в главе 4. Согласно стандартной модели, существуют шесть разных кварков и шесть разных лептонов, и каждую из этих групп можно подразделить на две группы по три частицы. В случае лептонов у нас есть три (нейтральных) нейтрино и (заряженные) электрон, мюон и тау-частица. Более того, у каждой частицы есть античастица – причем их свойства практически идентичны, и только заряд противоположен. Существует множество разных способов сгруппировать частицы – но почти всегда в конце концов мы получаем группы с равным количеством частиц. Но в одном случае симметрия дает сбой. Стандартная модель подразделяет все частицы на две группы.
140
С другой стороны, история знает много случаев, когда физики пили ртуть или хранили радиоактивные реактивы в прикроватных тумбочках.
1. Фермионы – составляющие материи. В число фермионов входят кварки, электроны, мюоны, тау-частицы и нейтрино – и все эти частицы, как мы только что говорили, образуют чарующе симметричную картину.
2. Бозоны – переносчики взаимодействий. Это частицы, которые переносят различные силы. В число бозонов входят фотоны, глюоны, частицы W и Z, а также гравитон и частица Хиггса, если они существуют.
Если мы все подсчитаем, получится, что с учетом частиц и античастиц существует 28 бозонов – и целых 90 разных фермионов! Пусть количество «фундаментальных» частиц вас не пугает: большинство из них более или менее идентичны друг другу и различаются лишь несущественными деталями – например, цветом, как кварки.