Вселенная, жизнь, разум
Шрифт:
Нас бы очень далеко завело обсуждение физических принципов работы лазеров. Желающих ознакомиться с этим вопросом мы отсылаем к книге Б. Лендьела «Лазеры». — М.: Мир, 1964. Мы здесь интересуемся лазерами с «потребительской» точки зрения, что для наших целей совершенно достаточно.
Основой современных лазеров (так же, как и мазеров) является некоторое «рабочее вещество», которое может быть и твердым и газообразным. На заре развития лазерной техники в качестве такого вещества использовался преимущественно синтетический рубиновый кристалл. В последние годы «твердотельным» рабочим веществом лазеров является стекло, активированное неодимом. Такие лазеры работают на волне 1,06 мкм. Наряду с этим в последнее время большое распространение
Газовые лазеры, использующие CO2 в качестве «рабочего вещества», могут работать в режиме непрерывной генерации, излучая мощность в несколько десятков киловатт. Так как излучение лазера синфазно по всей его поверхности, то, как известно из оптики, угловая ширина посылаемого им пучка будет равна /D, где — длина волны света, D — размеры блока «рабочего вещества». Отсюда следует, что даже у современных лазеров размером всего лишь в 1 см угол раствора светового пучка равен приблизительно 5 10-5 рад или 10 с дуги. Если таким пучком осветить Луну, размеры пятна будут около 20 км. Заметим, что угловые размеры пучка могут быть сделаны значительно меньше, если лазер сочетать с некоторой оптической системой типа телескопа.
Пусть мы имеем высококачественную линзу, диаметр которой равен d, причем фокусное расстояние также равно d. Если такую линзу поместить в пучок света, излучаемый лазером, то в ее фокальной плоскости действительное изображение пучка будет иметь размеры . Пусть это изображение совпадает с фокусом другой линзы (или зеркала) значительно большего диаметра A, причем фокусное расстояние большой линзы больше или равно A. В таком случае, как легко убедиться, пучок, выходящий из большого зеркала, будет иметь угол расхождения, равный /A. Хотя такие системы еще не изготовлены, в принципе это вполне возможно. Трудности здесь будут хотя и серьезные, но чисто технического характера. Например, необходимо будет разработать системы автоматического контроля и коррекции поверхности большого зеркала, компенсирующие деформации из-за нагревания его поверхности мощным пучком излучения.
Кроме исключительно высокой направленности, другим важным преимуществом пучка излучения, генерируемого лазером, является высокая монохроматичность. Так, например, у современных лазеров, работающих в непрерывном режиме, ширина полосы частот бывает до 10 кГц, что в десятки миллиардов раз меньше частоты излучения. Как мы увидим ниже, высокая степень монохроматичности пучка — весьма ценное качество для межзвездной связи.
В настоящее время усовершенствованию лазеров уделяется огромное внимание. Так, в США над этой проблемой работают тысячи фирм. Расходы на исследования в данной области достигают многих сотен миллионов долларов в год. Интерес к этой проблематике не случаен. Осуществление лазеров большой мощности будет означать появление нового типа оружия совершенно исключительной разрушающей способности. По существу,
Нужно, однако, надеяться, что колоссальные потенциальные возможности лазеров будут использоваться только в мирных целях. Развитие этой новой техники может оказать решающее влияние на ряд областей деятельности человечества, в частности на космическую связь.
Первыми, кто обратил серьезное внимание на возможность применения лазеров для космической связи, были американские ученые Таунс (один из основоположников квантовой электроники, лауреат Нобелевской премии) и Шварц. Их работа появилась в одном из апрельских номеров журнала «Нейчур» за 1961 г. В качестве основной аппаратуры они рассматривают две системы лазеров, которые пока еще не разработаны, но в принципе могут быть изготовлены в ближайшие годы.
Система «а» характеризуется мощностью 10 кВт в непрерывном режиме излучения, имеет длину волны света около 0,5 мкм, ширину полосы частот в пучке около 1 МГц, диаметр большого дополнительного зеркала 500 см и соответствующий этому зеркалу угол раствора пучка = 10-7 рад или 0,02".
Система «б» представляет собой «батарею» из 25 таких же лазеров, как и в системе «а», но для каждого из них A = 10 см, и, следовательно, угол раствора пучка равен l". С такой точностью вся батарея лазеров может быть ориентирована в одном направлении.
Следует заметить, что если система «а» будет установлена на поверхности Земли, то из-за неспокойствия атмосферы угол раствора пучка будет значительно больше теоретически ожидаемого, достигая l" или даже больше. Поэтому такую систему целесообразно поместить на искусственном спутнике за пределами атмосферы. Что касается системы «б», то она может работать с поверхности планеты без существенных искажений.
Таунс и Шварц формулируют два естественных условия обнаружимости сигналов, посланных с других миров с помощью лазеров.
Первое условие: пучок должен быть достаточно интенсивным, чтобы быть обнаруженным с помощью подходящего телескопа.
Второе условие: необходимо, чтобы каким-либо способом можно было отделить сигнал от излучения звезды. В радиодиапазоне второе условие выполняется почти автоматически, но в оптическом отделение сигнала от излучения звезды, как мы увидим ниже, — довольно сложная проблема.
Предположим, что сигнал посылается системой «а», вынесенной за пределы атмосферы планеты. Пусть расстояние R от планеты до Земли 10 световых лет, или 1019 см. Тогда поток излучения у Земли будет
где W = 10 кВт — мощность передатчика, = 10–14 — телесный угол пучка. Следовательно, F = 10–20 Вт/см2, в то время как поток от Солнца равен 0,14 Вт/см2. Зная отношение потоков излучения лазера и Солнца, легко можно вычислить звездную величину лазера, наблюдаемого с Земли. Для этого воспользуемся известной формулой астрономии, которая представляет собой определение понятия «звездная величина»:
Видимая звездная величина Солнца m2 = -26,8, откуда звездная величина лазера m1 = +21,2. Это означает, что с расстояния 10 световых лет такой лазер будет наблюдаться как одна из самых слабых звезд, едва доступная для больших телескопов. Поэтому для обеспечения надежной связи мощность передатчика должна быть повышена в несколько десятков раз по сравнению с принятой Таунсом и Шварцем.