Вселенная, жизнь, разум
Шрифт:
Теперь представим себе, что на какой-нибудь планете, обращающейся вокруг некоторой звезды, имеется высокоразвитая цивилизация, которая желает известить о своем существовании. Для этого она посылает в некотором направлении (например, в направлении на звезду, около которой можно ожидать наличие разумной жизни) радиосигнал. Сразу же эта цивилизация столкнется с такой трудностью: звезда, вокруг которой обращается планета — обитель разумной жизни. Является довольно мощным источником радиоизлучения, спектр которого непрерывен. Чтобы искусственный сигнал не «потонул» в радиоизлучении этой звезды, необходимо, чтобы его мощность была по крайней мере сравнима с мощностью радиоизлучения звезды в соответствующем диапазоне.
Будем
= 10 см — длина волны; k = 1,38 10–16 эрг/град — постоянная Больцмана; R = 7 • 1010 см — радиус Солнца; Tb = 50 тыс. К — яркостная температура спокойного Солнца на волне 10 см. Выполнив вычисления, получим
Следует иметь в виду, что Солнце излучает на всех частотах, поэтому полная мощность радиоизлучения спокойного Солнца очень велика, порядка десятков миллиардов киловатт. Но искусственный сигнал может иметь очень узкую спектральную полосу, например несколько тысяч или даже несколько сотен герц. Кроме того, Солнце излучает одинаково по всем направлениям, в то время как, пользуясь достаточно большой антенной, можно почти всю мощность искусственного сигнала сосредоточить в пределах узкого конуса, угол раствора которого близок к /D ( — длина волны, D — диаметр зеркала антенны). Этот конус определяет «главный лепесток» антенны (рис. 89). Если, например, пользоваться антенной диаметром 300 м (такие антенны у радиоастрономов имеются), то на волне 10 см обусловленный направленным действием антенны «выигрыш» будет равен:
где A — эффективная площадь антенны, близкая к ее геометрической площади. В нашем случае G 108. Это означает, что в направлении, перпендикулярном к поверхности зеркала, антенна излучает в 100 млн. раз больше, чем Солнце, при условии, что полная мощность, излучаемая ею по всем направлениям, такая же, как у Солнца.
Следовательно, даже если мощность передатчика будет всего лишь около 10-5 Вт/Гц, сигнал от него в направлении главного лепестка будет примерно такой же, как от Солнца.
Таким образом, собственное радиоизлучение звезд, около которых находятся высокоразвитые цивилизации, практически не может быть помехой для межзвездной радиосвязи. Гораздо более существенной помехой является фон космического радиоизлучения, из которого должен быть выделен сигнал искусственного происхождения. Величина последнего в радиоастрономии определяется так называемой антенной температурой TA:
где d1 — диаметр приемной антенны, d2 — диаметр передающей антенны, R — расстояние до передатчика, W — мощность передатчика, рассчитанная на 1 Гц. С другой стороны, разумно наложить условие, чтобы антенная температура, создаваемая искусственным источником радиоизлучения, была не меньше яркостной температуры неба на соответствующей частоте Tb. Теперь мы можем сформулировать «условие обнаружимости» сигнала:
Следует, однако, отметить, что в ряде случаев «полезный сигнал» может быть обнаружен и тогда, когда TA < Tb, например TA = 0,1 Tb. Однако мы сейчас будем пользоваться критерием TA >= Tb.
Полагая d1 = d2 = 100 м, W = 100 Вт/Гц, = 10 см, из условия TA = Tb найдем, что R 1019 см, т. е. около 10 световых лет; это соответствует расстоянию до ближайших звезд. Тем самым доказано, что уровень современной земной радиотехники вполне позволяет осуществить радиосвязь на межзвездных расстояниях.
Этот удивительный результат стоит как-то осмыслить. На памяти старшего поколения наших современников произошло установление трансатлантической радиосвязи. В 1945 г. впервые посланный на Луну сигнал, отразившись от нее, был принят на Земле. Через 14 лет, в 1959 г. была осуществлена радиолокация Венеры. Это значительно более трудная задача, чем радиолокация Луны, потому что, как известно, мощность радиолокационного передатчика должна быть пропорциональна четвертой степени расстояния до цели.
В 1961 г. советская космическая ракета стартовала в сторону Венеры, причем на некотором участке ее траектории с ней поддерживалась радиосвязь. В настоящее время можно уже говорить о вполне уверенной и надежной радиосвязи с космическими ракетами на расстоянии свыше миллиарда километров (вспомним «Пионер-10»). При этом следует иметь в виду, что бортовая радиоаппаратура, установленная на космических ракетах, по ряду причин должна быть малогабаритной и маломощной. Между тем при осуществлении связи на межзвездных расстояниях будут использоваться самые большие из существующих стационарных радиотелескопов. На рис. 90, а также 91 и 92 (не сканировались) приведены фотографии некоторых таких антенн.
Пока рекордной является гигантская антенна (диаметр зеркала 300 м), построенная в Пуэрто-Рико (рис. 93). Наряду с ростом размеров антенн в последние годы резко увеличилась чувствительность приемной аппаратуры на сантиметровом и дециметровом диапазонах. Это достигнуто благодаря широкому применению квантовых усилителей — «мазеров». Такая аппаратура в сочетании с огромными, достаточно точно изготовленными антеннами позволяет обнаружить сигнал от «точечного» источника (каков, в частности, искусственный сигнал космического происхождения) даже если TA значительно меньше Tb.