Вселенная, жизнь, разум
Шрифт:
Что касается системы «б», то поток от нее получается в 100 раз меньшим, чем от системы «а». Поэтому, вопреки утверждению Таунса и Шварца, для межзвездной связи она непригодна.
Теперь мы обсудим вопрос о возможности отделения сигнала лазера от излучения звезды, около которой он находится. Единственный способ такого отделения состоит в использовании свойства высокой монохроматичности излучения лазеров. Пусть эта звезда излучает вблизи волны 0,5 мкм так же, как и наше Солнце (заметим, что вблизи этой волны находится максимум в распределении солнечного излучения по спектру). Тогда интенсивность излучения, рассчитанная на единичный интервал частоты и единичный телесный угол, будет равна 4 1010 Вт/(Гц • ср), в то время как у лазера интенсивность (равная потоку излучения, деленному на телесный угол пучка) будет
Мы учли то обстоятельство, что у лазера все излучение
Перечисленные обстоятельства открывают возможности в сотни и даже тысячи раз увеличить «контрастность» спектральных интенсивностей лазера и Солнца. Если лазер вынесен за пределы земной атмосферы (которая полностью поглощает ультрафиолетовое излучение с длиной волны, меньшей 0,29 мкм, и существенную часть инфракрасного излучения), то в принципе, работая в области = 0,15 мкм «на дне» линии поглощения, можно получить для лазера спектральную интенсивность, в десятки тысяч раз большую, чем у Солнца. Следует, однако, иметь в виду, что при этом могут встретиться большие технические трудности как при изготовлении лазера в указанной спектральной области, так и вследствие резкого уменьшения отражательной способности зеркал в ультрафиолетовых лучах. Если лазер будет работать в инфракрасной области спектра, это повлечет за собой другую неприятность: пучок станет более расходящимся, так как длина волны будет больше. В общем создается впечатление, что выгоднее всего лазеру работать в видимом диапазоне частот «на дне» какой-нибудь сильной линии поглощения в спектре Солнца, например известных линий «H» и «K», принадлежащих ионизованному кальцию. В этом случае спектральная интенсивность лазера в узкой полосе частот шириной в 1 МГц будет в 300 раз больше, чем у Солнца.
Если теперь наблюдать звезду с достаточно узкополосным светофильтром, излучение лазера может быть обнаружено на фоне излучения звезды. То же самое можно сформулировать иначе: если будет получен очень хороший спектр звезды, в нем может быть обнаружена весьма узкая линия излучения, принадлежащая лазеру. Однако практически трудно изготовить очень узкополосные хорошие фильтры. Точно так же разрешающая способность спектрографов ограничена.
Какая же должна быть у спектрографа разрешающая способность, чтобы в спектре звезды обнаружить линию излучения от лазера? Такая линия вполне может быть обнаружена, если ее интенсивность хотя бы на 10 % превышает интенсивность непрерывного спектра. Существенно, однако, что интенсивность линий сильно «размазывается» разрешающей способностью спектрографа. Если, например, последняя составляет 1 , или, в единицах частоты, 1011 Гц, то усредненная по этому интервалу частот интенсивность очень узкой линии лазера будет уже в 300 раз меньше интенсивности соседних участков спектра звезды. Отсюда следует, что для получения 10 % контраста линии лазера над фоном разрешающая способность спектрографа должна быть 0,03 . Это очень высокая разрешающая способность. Но применение хороших спектрографов в сочетании с интерференционными приборами, по-видимому, позволило бы обнаружить в спектрах близких звезд слабую линию излучения искусственного происхождения. Такие наблюдения, конечно, следовало бы проводить на самых сильных телескопах. Если же мощность передатчика увеличить в несколько десятков раз (см. выше), то обнаружение такой линии не будет слишком трудной задачей даже для телескопов умеренных размеров в сочетании с хорошими спектрографами.
При таких наблюдениях может, однако, возникнуть еще одна трудность. Из-за непрерывного изменения скорости передатчика по лучу зрения, обусловленного эффектом Доплера, частота сигнала будет непрерывно меняться. Для обнаружения сигнала, очевидно, нужно, чтобы за время фотографирования спектра звезд (скажем, час) частота сигнала не вышла бы за пределы полосы частот, определяемой разрешающей способностью спектрографа. Быстрее всего доплеровское смещение сигнала меняется из-за суточного вращения планеты, так как в этом случае период колебаний лучевых скоростей сравнительно невелик. Все же простой расчет показывает, что за время порядка 1 часа полоса частот лазера не уйдет за пределы, определяемые разрешающей способностью спектрографа.
Таким образом, мы убедились, что лазеры при условии их дальнейшего усовершенствования вполне могут быть пригодны для межзвездной связи. При мощности лазера 10 кВт осуществление такой связи оказывается на пределе возможностей современной техники. Имеются, однако, серьезные основания полагать, что в перспективе ближайших нескольких десятилетий мощность лазеров вырастет в огромной степени. Например, применение лазеров для военных нужд может потребовать увеличения их мощности до миллионов киловатт и даже больше.
Как же можно распознать линию искусственного происхождения в спектре какой-нибудь звезды? Во-первых, эта линия излучения должна быть чрезвычайно узкой; во-вторых, ее, по-видимому, нельзя будет отождествить с какой-либо из известных спектральных линий, и, наконец, интенсивность этой линии может регулярно меняться во времени. В этом случае информация может передаваться так же, как при пользовании «световым телеграфом». Коль скоро будет обнаружено присутствие линии излучения искусственного происхождения в спектре звезды, дальнейшее ее изучение можно будет проводить детально посредством специально для этого разработанной аппаратуры. При этом широкое применение может получить фотоэлектрический метод наблюдения, который позволяет свести «время накопления» сигнала (аналогичное «времени экспозиции» при фотографических наблюдениях) до нескольких минут и даже меньше. Это весьма желательно для расшифровки модулированного светового сигнала.
Все наши расчеты условий обнаружений оптических сигналов, посланных с других планетных систем при помощи лазеров, предполагают, что инопланетная цивилизация посылает очень узкий пучок света на Землю. Точность посылки сигнала должна быть очень высокой. Угол 10-7 рад, или 0,02 с дуги (а это угловая ширина пучка), — величина очень маленькая. Именно с такой точностью должно выдерживаться направление посылки сигнала. Эта точность находится на пределе возможностей современной астрономии. Если смотреть с ближайших звезд, угловой диаметр земной орбиты будет около l c дуги. Так как расстояние между Землей и Солнцем разумным инопланетным существам заранее не известно, они должны своим лучом «шарить» в пределах Солнечной системы, регулярно меняя его направление в пределах нескольких секунд дуги. Ведь диаметр пучка света в пределах Солнечной системы «всего лишь» около 10 млн. км, что в 15 раз меньше расстояния от Земли до Солнца. По этой причине Земля будет только изредка, более или менее случайно, освещаться инопланетным лазером. Это, конечно, в высшей степени осложняет возможность его обнаружения земными наблюдателями. Последнее, на наш взгляд весьма важное, соображение Таунс и Шварц совершенно не учитывали. Между тем оно существенно снижает эффективность лазеров как средства межзвездной связи. Чтобы обойти эту трудность, нужно допустить, что диаметр пучка в пределах Солнечной системы в несколько раз больше расстояния между Солнцем и Землей. Тогда значительная часть Солнечной системы была бы «покрыта» одним пучком света. Но в таком случае при всех предположениях о расстоянии до облучающего нас лазера его мощность должна быть в несколько тысяч раз больше принятой нами.
Разумеется, это обстоятельство не может рассматриваться как решающий аргумент против возможности использования лазеров для межзвездной связи, так как мощность последних, как уже говорилось, может быть существенно большей, чем мы принимаем. Все же бесспорен тот факт, что осуществление связи между инопланетными цивилизациями с помощью радиоволн (например, на волне 21 см) значительно экономичнее, чем при помощи лазеров. Но мы не можем знать, являются ли наши критерии «экономичности» столь важными для этих цивилизаций. И никогда не следует забывать при этом, что мы судим о технических и экономических возможностях межзвездной связи исходя из современных условий. Но ведь в будущем условия могут сильно измениться и то, что сегодня кажется малоперспективным, приобретет решающее значение.
В заключение этой главы мы остановимся на перспективах связи при помощи лазеров в пределах Солнечной системы. Если пучок света от системы «а» направить на Марс в эпоху его противостояния, когда расстояние до этой планеты сокращается до 50 млн. км, на его поверхности образуется освещенное пятно диаметром 5–7 км. Из области этого пятна вспышка света от лазера будет видна как исключительно яркая звезда -7-й величины, т. е. примерно в 10 раз ярче, чем Венера на небосклоне Земли. Совершенно очевидно, что такой ярчайший источник можно как угодно модулировать и передавать таким образом с Земли на малую область Марса любую информацию. Такой же пучок, направленный на неосвещенную сторону Луны, даст пятно диаметром в 40 м, причем освещенность там будет всего лишь в 100 раз меньше, чем от прямых солнечных лучей. Из приведенных примеров следует, что перспективы связи на лазерах в пределах Солнечной системы очень благоприятны. (В США и СССР уже давно проводятся удачные опыты по освещению Луны лазером.)