Вселенная. Руководство по эксплуатации
Шрифт:
Ученые заметили, что если посветить на металлы ультрафиолетовым лучом, выскакивают электроны. С другой стороны, если подставлять те же самые металлы под менее энергичные длины волн, ничего не происходит. Эйнштейн сделал вывод, что единственное возможное объяснение фотоэффекта — фундаментальное: свет состоит из отдельных частичек, фотонов, каждая из которых передает свою энергию одному-единственному электрону. Это как стучать одним бильярдным шаром по другому, а значит, куда больше похоже на частицы, чем на волны, верно? Поскольку красный, зеленый или синий свет (сделанный из отдельных фотончиков) такой слабенький, ни
Эйнштейн получил за это открытие Нобелевскую премию, практически каждая вводная книга по этой теме воздает ему должное как человеку, доказавшему, что свет ведет себя как поток частиц, однако, как выяснилось, вердикт не был окончательным. В 1969 году несколько исследовательских групп показали, что фотоэффект можно объяснить и на основе волновой гипотезы. Эйнштейн прекрасно объяснил фотоэффект, но оказалось, что его объяснение не единственное. Просто он рассказал нам прелестную историю со счастливым концом. Хотя в его доказательстве было несколько логических погрешностей, оказалось, что он все равно был прав. Множество экспериментов впоследствии показали, что свет определенно ведет себя как поток частиц.
Представляется, что все эти споры стоят в ОДНОМ ряду с вопросами, ответы на которые примерно так же судьбоносны: «Сколько ангелов уместится на кончике иглы?» и «Куда, куда вы удалились, весны моей златые дни?» И правда, кому интересно, что такое свет на самом деле — волны или частицы? К тому же, если вдуматься, не такое уж это и противоречие. Вот, например, океанские воды уж точно ведут себя как волны, но мы-то знаем, что на самом деле они состоят из отдельных (вроде частиц) молекул.
Может быть, и свет ведет себя так же? Может быть, он только кажется непрерывной волной — примерно как кажется непрерывной картинка на экране телевизора? Если внимательно присмотреться к телевизору, видно, что изображение «на самом деле» состоит из отдельных пикселей.
Может быть, свет только кажется волной, потому что в нем так много фотонов? В контексте опыта с двойной щелью, может быть, ужасно много фотонов проходит в левую щель, ужасно много фотонов — в правую, а потом две волны интерферируют друг с другом.
Ах, если бы жизнь была так проста.
Мы уже говорили о том, что физическая интуиция в квантовой механике не помощница. Надеемся, вы не выбросили надувные нарукавники, потому что сейчас мы бросим вас на глубину.
Множество фотонов проходят в каждую щель и интерферируют друг с другом, причем ведут себя как волны. Мистер Хайд, который хочет вернуться в состояние доктора Джекила, кое-что задумал. «Может быть,— свирепо рычит он,— если снизить интенсивность луча, фотоны будут пролезать в щели по одному. А отдельный фотон уж точно не сможет
вести себя как волна, ему ведь не с чем интерферировать!»
Бедный, легковерный простак! Посмотрим, что получается, когда он претворяет в жизнь свой завиральный проект.
Как и планировалось, он приглушает луч и удостоверяется в том, что фотоны попадают в аппарат строго по одному. Как и раньше, на заднем экране есть детектор, который засекает каждый попадающий в экран фотон. Хотя результаты должны накопиться, а происходит это не сразу, Хайд все равно видит, какой рисунок они образуют
Хайд видит на дальнем экране рисунок йз нескольких полос, который показывает, что фотонный луч и в самом деле ведет себя как волна. Попадающие в аппарат фотоны с чем-то интерферируют. Но ведь луч настроен так, что выпускает фотоны по одному. Единственное логическое объяснение — что фотоны интерферируют сами с собой. Каждый
фотон проходит сквозь обе щели одновременно. Фрост ошибался. Если ты фотон, то тебе по силам пройти по обеим дорогам, а не только по той, которая покажется нехоженой.
Мы знаем, что фотон умеет вести себя и как волна, и как частица. Понимание, что фотон способен проявлять оба качества, не объясняет, откуда он знает, когда проявлять какое. В 1978 году Джон Арчибальд Уилер из Принстонского университета предложил интересный опыт, который позволил увидеть, как фотоны поведут себя в опыте с двойной щелью, если мы изменим правила игры на полдороге. «Представим себе,— подумал Уиллер,— что задний экран можно убрать, а за ним на некотором расстоянии стоят два телескопчика, каждый из которых точно нацелен на одну из двух щелей».
Если убрать экран, то, глядя в тот или иной телескопчик, мы точно скажем, в какую щель проскочил тот или иной фотон. А значит, каждому фотону придется проскакивать в определенную щель, а не в обе. Иначе говоря, можно заставить фотоны вести себя как частицы, если убрать экран,— а значит, превратить экспериментатора обратно из Хайда в Джекила. Если мы поставим экран на место, то фотоны начнут снова вести себя как волны — и снова воцарится мерзопакостный Хайд.
Тот факт, что мы повлияем на поведение фотонов, добавляя или убирая экран, сам по себе странноватый, но дальнейшее предположение Уилера делает его еще более странным. Что будет, если убрать экран после того, как отдельный фотон пройдет первый экран — тот, что со щелями? «Опыт с отложенным выбором» позволит нам превращать свет из волны в частицу и обратно в любой момент эксперимента.
Иначе говоря, уже после того» как фотон пролетел сквозь экран со щелями, мы можем сделать так, чтобы он пролетел только сквозь одну щель [19]и для этого нужно всего-навсего убрать проекционный экран. Хуже того — своими действиями мы сделаем так, что фотон каким-то образом выберет, через какую щель проскакивать. Есть что-то замогильно-жуткое в том, чтобы иметь возможность так глубоко повлиять на реальность, особенно если осознать, что, как представляется, фотон тогда делает выбор ретроспективно.
Квантовая механика (и Уилер) утверждает, что в принципе не существует никакого способа предсказать, через какую щель пройдет фотон, до того, как мы заставим его вести себя согласно классической физике (убрав экран). Да, мы действительно способны изменить квантовый мир уже после того, как произошло некое событие. Из чего можно вывести два потрясающих следствия:
1) наблюдение над системой фундаментально ее меняет;
2) отдельные фотоны способны вести себя и как частица, и как волна и в мгновение ока переключаться из одного состояния в другое.