Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Описанный способ метания снаряда не является единственным. Наряду со ствольным огнестрельным оружием во время Великой Отечественной войны Советской Армией с большим успехом была применена реактивная артиллерия («Катюша» и другие конструкции). Под влиянием этого успеха реактивные системы были затем введены на вооружение в других армиях.

Научные основы реактивного движения были разработаны знаменитым русским ученым К. Э. Циолковским.

Принцип действия реактивной артиллерии в известной мере противоположен принципу действия ствольной артиллерии. Реактивный снаряд (рис. 8) имеет камеру, представляющую собой как бы небольшой тонкостенный ствол, снабженный узким отверстием — соплом, направленным назад. При сгорании порохового заряда образующиеся

газы с очень большой скоростью вытекают назад. При этом получается, как и при выстреле из ствольного орудия, сильная отдача. В ствольном орудии отдача движет орудие назад и является обычно нежелательным явлением. В реактивном же оружии назад летят газы из сопла, а отдача заставляет двигаться снаряд вперед. Так как скорость движения газов очень велика и время истечения также значительно, то дальность полета получается большой. Снаряд имеет боевую головку, в которой помещен заряд взрывчатого вещества, взрывающийся при достижении цели.

Рис. 8. Схема устройства реактивного снаряда.

На основе реактивного принципа во время второй мировой войны в Германии были сконструированы и применялись сверхдальнобойные снаряды. Одним из наиболее эффективных была ракета Фау-2. Общий вес этой ракеты составлял 13,5 тонны, длина 14,5 метра, диаметр корпуса около двух метров. Заряд взрывчатого вещества в боевой головке составлял 900 килограммов для стрельбы на дальние расстояния; для стрельбы же на малые дистанции, за счет уменьшения количества горючего этот заряд увеличивали до 4500 килограммов.

В качестве горючего, приводящего снаряд в движение, в этой ракете использовался не порох, а жидкое топливо (спирт и жидкий кислород), которое дает больше энергии; общее количество топлива около 8 тонн. При выстреле ракета сначала поднимается вертикально вверх, затем под действием автоматического управления начинает двигаться наклонно, достигая максимальной высоты свыше 100 километров, и после этого переходит на горизонтальный полет. Благодаря этому ракета большую часть пути летит в сильно разреженном пространстве, где сопротивление воздуха полету очень мало. Приближаясь к месту назначения, ракета резко опускается вниз и падает на цель. Максимальная дальность полета — около 400 километров.

Большим преимуществом реактивной артиллерии является легкость и обусловленная ею подвижность. Не требуется ни длинного тяжелого ствола, ни лафета. Имеется только одно направляющее устройство того или иного типа (рис. 9). При этом направляющее устройство может быть легким, так как отдача целиком используется для метания снаряда.

Рис. 9. Советская реактивная установка.

Благодаря отсутствию отдачи стало возможным применение и ручного реактивного оружия довольно крупного калибра, например, для борьбы с танками. Ствольные орудия такого калибра были бы непомерно тяжелы и давали бы слишком большую отдачу.

Чем же отличаются пороха от инициирующих и вторичных взрывчатых веществ?

Горение пороха при выстреле должно быть безусловно устойчивым, то есть никогда не должно переходить во взрыв. Если произойдет взрыв, то давление настолько увеличится, что ствол будет разорван.

Отсюда ясно, что инициирующие взрывчатые вещества не могут быть использованы как метательные: их горение неизбежно перешло бы во взрыв.

Однако и вторичные взрывчатые вещества в обычном их виде также нельзя применять как пороха. Горение этих взрывчатых веществ устойчиво не при всех условия в частности, если горение идет при быстро возрастающем давлении, как это происходит при выстреле на начальной его стадии, то оно может перейти во взрыв. Большую роль при этом играют физическая структура и свойства взрывчатого вещества. Так, если применить вместо пороха пироксилин, имеющий структуру измельченной ваты, то горение его тотчас переходит во взрыв. Но если тот же пироксилин растворить в соответствующем растворителе, то после испарения последнего мы получим пироксилиновый бездымный порох — массу, напоминающую целлулоид. Этот порох устойчиво горит при любых условиях.

Нитроглицерин — взрывчатое вещество, имеющее вид вязкой маслообразной жидкости, — также легко дает взрыв при горении в условиях выстрела, то есть при возрастающем давлении. В сочетании же с пироксилином он образует нитроглицериновый бездымный порох, напоминающий по своим физическим свойствам рог; в отличие от нитроглицерина горение пороха во взрыв уже не переходит.

От порохов требуется, чтобы они в условиях выстрела не только горели без перехода во взрыв, но и давали возможность надежно и точно регулировать быстроту сгорания порохового заряда во время выстрела.

Зачем это нужно?

А вот зачем. Скорость, с которой снаряд вылетает из ствола, зависит от количества энергии, сообщаемой пороховыми газами снаряду.

Эта энергия в свою очередь зависит от длины ствола и силы давления пороховых газов в нем, которая заставляет снаряд двигаться.

Наибольшее допустимое давление газов определяется прочностью ствола. Изобразим на графике ствол пушки и изменение давления в нем при движении снаряда. Если бы был такой порох, при котором давление во все время движения снаряда в стволе не менялось (рис. 10 а), то энергия, сообщенная снаряду, была бы равна, как известно из физики, произведению силы на путь, то есть на длину ствола. Это произведение, как видно из графика, равно площади заштрихованного прямоугольника.

Если при горении пороха давление в стволе не остается постоянным, а изменяется, например, так, как показано на рисунке 10 б или 10 в, то энергия снаряда при вылете его из ствола опять-таки изображается заштрихованными площадями на этих рисунках.

Рис. 10 а, б, в. Изменение давления в стволе пушки при выстреле.

Мы видим, что наибольшая площадь, то есть энергия снаряда, получается, если давление при выстреле постоянно, наименьшая — в третьем случае, когда давление быстро падает. Поэтому порох, дающий такую кривую, применять было бы невыгодно — дальность стрельбы сократилась бы.

По этой причине стремятся применять такие пороховые заряды, при горении которых давление падало бы возможно медленнее, кривая была бы наиболее пологой.

Почему же изменение давления в стволе при выстреле зависит от порохового заряда и как на него можно влиять?

Во время выстрела снаряд в стволе движется все быстрее и быстрее, и объем той части канала ствола, в которой находятся пороховые газы, становится все больше. Понятно, что если бы количество газов, образующихся при горении порохового заряда, было постоянным, то давление стало бы быстро падать. Для того чтобы давление не падало или, по крайней мере, падало возможно медленнее, нужно чтобы газов при горении порохового заряда образовывалось в каждый последующий момент больше, чем в предыдущий.

Как это достигается?

Горение современных порохов происходит только на поверхности их частиц, быстро охватываемой пламенем при воспламенении. Но частицам пороха можно придать такую форму, чтобы поверхность их при горении возрастала, например форму многоканальных трубок. Каждая такая трубка горит и по своей наружной поверхности к по внутренней поверхности каналов. Из рисунка 11 а видно, что при этом общая величина горящей поверхности будет возрастать и количество газов соответственно будет все время увеличиваться.

Поделиться:
Популярные книги

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II