Я познаю мир. Военная техника
Шрифт:
Именно такие размеры имеет типовой подъемник современного авианесущего крейсера, в котором и должен разместиться новый летательный аппарат, компактно сложенный.
Для этого пришлось сделать откидными обтекатели бортовых радаров, хитро сложить консоли крыла (они откидываются вверх не целиком, а еще и перегибаясь пополам), отказаться от хвостового оперения, применить шасси велосипедного типа, колеса которого размещаются в фюзеляже, А главное, конструкторы сумели по–новому решить проблему взлета и посадки самолета, его управляемости.
Внешний
До сих пор считалось, что вертикальный нзлет очень расточителен – двигательная установка тратит уйму топлива. Машина же при отом весьма неустойчива. В новом СВВП эта проблема решена. Подробностей конструкторы не раскрывают, это их ноу–хау.
По их словам, новшество позволяет создать палубный истребитель невиданных летных качеств – он сможет развивать скорость до 2650 км/ч и подниматься на высоту более 11 км. К сожалению, пока машина "летает" лишь в недрах компьютера – не хватает средств для продолжения работ.
Компьютер показывает, как будет выглядеть СВВП в полете
На чужих крыльях
Помните, как конструкторы пытались увеличить дальность полета самолетов? На большой гидросамолет крепили маленькую "летающую лодку", и тот нес малыша на своих крыльях почти до самого конца маршрута. Ну а там "летающая лодка" продолжала полет уже самостоятельно...
Отечественные конструкторы в 30–е годы довели такой проект до логического завершения. Сначала на крылья тяжелому бомбардировщику ТБ–1 поставили два истребителя И–4, а потом предполагалось увеличить общее количество самолетов в "сцепке" до пяти или даже до шести – по два самолета над крыльями и под крыльями бомбардировщика и еще один – на фюзеляже.
Широкого распространения такие "аэросцепки" так и не получили. Практическое применение подобный метод транспортировки получил лишь во второй половине XX века, когда американцы на "Боинге" и мы – на "Мрии" Ан–225 или на тяжелом самолете–носителе ВМТ возили космические "челноки" с места приземления или сборки к месту старта.
Затем эта идея получила дальнейшее развитие в проекте научно–производственного объединения "Молния" – многоразовой авиационно–космической системе (МАКС). На "спине" самолета–носителя закрепляется транспортно–космическая система, состоящая из космического самолета и внешнего топливного бака. Достигнув высоты 9–12 км, самолет–носитель сбрасывает свою нагрузку. Космический "челнок" включает собственные двигатели и, используя топливо внешнего бака, продолжает полет в стратосферу, а затем в космос. Масса полезной нагрузки в пилотируемом варианте может достигать 7 т, а в беспилотном – 8 т.
Так путешествовал "Буран" на фюзеляже "Мрии"
Выполнив свою задачу, самолет–носитель, а затем и "челнок" возвращаются на базу. Потерянным окажется лишь внешний топливный бак. Да и то, как полагают специалисты, его можно спасти, спустив на парашютной системе.
Схема
Есть предложения использовать в качестве носителя не только грузовой самолет, но и, скажем, экранолет специальной конструкции. Его грузоподъемность еще больше, чем у самолета–носителя.
Впрочем, военных в свое время больше интересовала другая система вывода объектов в космос. Для вооружения Ту–160 была разработана крылатая ракета. Так вот, одну из ее модификаций предполагалось запускать даже на орбиту. Ныне, когда времена изменились, специалисты авиационного научно–технического комплекса им. А. Туполева и конструкторского бюро "Радуга" создали на базе этой разработки коммерческую авиационно–космическую систему "Бурлак" – оперативное, экономичное средство запуска на околоземные орбиты легких спутников.
Технически это будет выглядеть так. "Бурлак" подвешивается под фюзеляж самолета–носителя Ту–160СК. Тот стартует с аэродрома и поднимается на высоту 12–14 км, удалясь от базы в поисках подходящей зоны запуска. Добравшись до расчетной точки, Ту–160 развивает сверхзвуковую скорость до 500 м/с, что существенно повышает энергетические возможности самого "Бурлака". Ведь отцепившись, он уже будет иметь существенный запас скорости, а работа собственных ракетных жидкостных двигателей на трех ступенях позволит вывести на орбиту до 200 км полезную нагрузку массой от 800 до 1100 кг. А при необходимости та же ракета способна поднять спутник массой до 600 кг на круговую орбиту высотой до 1000 км!
Схема действия системы "Бурлак"
Вывод спутника осуществляется с исключительной точность. За соблюдением всех параметров, корректировкой трассы проследят два мобильных командно–измерительных пункта, размещенных на борту самолетов сопровождения.
Словом, благодаря новому подходу резкое сокращаются затраты на строительство, ремонт, обслуживание стартовых позиций. Сто" имость запуска сокращается в 2–2,5 раза по сравнению с обычным вертикальным наземным стартом.
Обошли создатели "Бурлака" своих заокеанских конкурентов и в другом. Максимальная полезная нагрузка, выводимая на орбиту, в 2,5 раза превосходит аналогичные показатели американского комплекса, созданного на базе ракеты "Пегас" и самолета Б–52.
Правда, американцы собираются начать испытания нового воздушно–космического комплекса. К самолету–бомбардировщику крепится гиперзвуковой летательный аппарат Х–43, оснащенный прямоточными реактивными двигателями, работающими ка водородном топливе. Самостоятельно аппарат взлететь не может, однако когда сверхзвуковой бомбардировщик поднимет его на высоту 10–15 км и разгонит до скорости 2000 км/ч, Х–43 сможет лететь. Сначала его планируется поднять на высоту 30 км, а там, возможно, дело дойдет и до полетов на орбиту.
Впрочем, это не единственный способ для полетов в космос.
В космос на... самолете?!
Как стартует современный космический корабль, видели многие: телевидение в подробностях донесло до нас эту впечатляющую картину. Отходят фермы обслуживания. Звучит команда "Пуск". Рев двигателей, и серебристая сигара сначала медленно, потом все быстрее и быстрее начинает набирать высоту. Вскоре лишь горячий воздух дрожит над опустевшим стартовым столом, неспешно оседают клубы дыма и пыли, а в небе еще какое–то время держится инверсионный след.