Яблони на Марсе
Шрифт:
Такой разнобой во взглядах и все растущее могущество людей не может не сказаться губительно на биосфере. Из огромного разнообразия растений, кормивших человека 10 тысяч лет назад, сегодня основу питания составляет всего каких-то 30 видов растений. Древнее природное разнообразие местных видов заменено ныне небольшим числом специально выведенных и упорно внедряемых сортов, выращиваемых на обширнейших пространствах.
96 процентов урожая гороха в США получается всего-навсего от двух его разновидностей, а 71 процент урожая кукурузы — от шести ее сортов. Спору нет, используются чудодейственные по продуктивности растения, но, увы,
Итак, одна из целей биоинженерии — возврат растительного царства к многообразию, к неоглядному богатству видов флоры. Чтобы было, как в шутливом стихотворений Натальи Кончаловской «Про огород», когда рассеянный садовник смешал все семена и получились редисвекла, чеслук, репуста и спаржовник. Пусть будет, как пишет поэтесса:
Но когда садовод Нас позвал в огород, Мы взглянули, и все закричали: «Никогда и нигде, Ни в земле, ни в воде Мы таких овощей не встречали!..»Разнообразия кормящих человека растений можно добиться и таким необычным способом: превратить методами генной инженерии сорняки в культурные, съедобные растения. Рисуется фантастическая ситуация. Съедобны ландыши, незабудки. Готовят салат из листьев сирени, гарниры из ромашки, супы из хвои. Распиленная как бы на дрова плоть деревьев подается на стол вместо колбасы. Пырей, подорожник считаются деликатесами, их трудно найти на полях. Зато картофель никто не ест, пшеница идет исключительно на корм скоту!
Нашу фантазию можно продолжить. Съедены все сады, кустарники, леса, травы. Человечеству вновь приходится садиться на «черную пищу»: на картошку, овощи, хлеб. Биоинженеры срочно пытаются превратить зерновые, картофель и другие древние пищевые растения в новомодные пырей, кислицу, сныть…
Селекционеры, наблюдая за работой биоинженеров, испытывают подчас вовсе не чувство зависти. Они полны иронии, им хочется подтрунивать, язвить. Многие из них считают, что генетическая инженерия — это своего рода увлечение, мода, что она пройдет, и никакой особой пользы практики от нее не получат.
Медлительные, терпеливые, упорные, свято соблюдающие правила, издавна декретированные природой, селекционеры подозрительно относятся к поспешным, явно урбанистическим методам биоинженерии. Их раздражает рвение, спешка, рекламный шум, чрезмерные обещания, явное желание нарушить ритуалы, поскорее опрокинуть поставленные природой барьеры, обойти их, пролезть с черного хода, пройти вне очереди.
Этот старый спор между деревенской неторопливостью и основательностью и городской суетой и необязательностью, видимо, разрешится не скоро, потому что биоинженер в конечном итоге передает свои находки селекционерам, именно они должны судить, удался или нет очередной генный «фокус».
«Каких бы чудес ни напридумали молекулярные биологи, — рассуждают селекционеры, — нам решать, что у них получилось. Потому-то скоростные
Еще одна трудность для генетической инженерии, занятой растениями, в том, что селекция новых сортов затрагивает свойства растения, контролируемые уже не одним, а сразу многими генами.
Поясним эту важную мысль таким примером. Уже давно ученые хотят сконструировать растения, способные сами себя удобрять. Взять хотя бы азот. Земная атмосфера — настоящий азотный океан, растения купаются в его волнах, но усвоить могут лишь крохи, да и то если на растительных корнях обитают особые азотфиксирующие бактерии. И давно настойчиво пропагандируется мысль передать зерновым культурам — основной пище человечества — группы генов nif из бактерий, умеющих улавливать атмосферный азот, и тем самым избавиться от необходимости вносить под эти культуры в почву азотные удобрения.
К сожалению, эта идея фикс генных инженеров пока остается всего лишь мечтой. Причина та, что переносить придется сразу 17 (!) генов. И даже если предположить, что удастся заставить работать все эти гены, например в геноме пшеницы, то, по оценкам специалистов, такие растения снизят урожайность на 20–30 процентов сухого веса из-за необходимости нести дополнительные энергозатраты на… фиксацию азота!
Да, в геноме растений есть дальние связи между генами, и вмешиваться в работу генной машины следует с большой оглядкой. Неосторожно нажимая на «кнопки», «педали», «рычажки», можно ненароком перевести генные механизмы растения из одного режима в другой, вовсе нежелательный для человека.
В этой связи злопамятные селекционеры вспоминают обычно историю с геном opaque 2. В 1964 году этот ген захотели использовать в США, в университете Пардью, для обогащения зерен кукурузы аминокислотой лизином, что резко бы повысило питательную ценность кукурузного зерна.
Перенос гена удался, радость была великая, но… урожайность у трансформированных сортов упала на 15 процентов, а сами зерна стали хрупкими и чувствительными к возбудителям болезней!
Все эти замечания несколько неожиданны для читателя, ждущего описаний сногсшибательных перспектив. Их нам вовсю расписывают при случае средства массовой информации, которые просто обуревает жажда сенсаций. Порой это делают и некоторые ученые, излишне падкие на новые кредиты, сулящие несведущим золотые горы, молочные реки и кисельные берега.
Конечно же, очень жаль, что вооруженная генноинженерными методиками селекция не может обуть сапоги-скороходы и двинуться вперед семимильными шагами. Верно, бесплатных завтраков в ближайшем будущем она не обещает, но зато оказывается путем, гарантирующим хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.
Хотя самоудобряющаяся пшеница и коровы величиной со слона еще не стали реальностью сельского хозяйства, биоинженерия, имеющая дело с растениями, уже отпраздновала не одну победу. Так недавно молекулярные биологи сумели обеспечить табак и томаты иммунитетом к их вредителям.