Яблони на Марсе
Шрифт:
Зубко высок, худ, порывист, то вдруг замолкнет — кажется, потерял всякий интерес к разговору, — то начинает частить словами… Михаил поведал мне о тайнах клеточной инженерии, познакомил со многими ее чудесами. Одно из них — в любой клетке листа, тычинки, пестика хранится полная информация о том, как растение должно развиваться, цвести, плодоносить… Все эти фазы развития — полный цикл требует примерно пяти месяцев — исследователи умеют воспроизвести, получив в итоге зрелое растение с листьями, корнями, цветами и плодами. Не какую-то там растительную недоделку или калеку!..
А вот с животной клеткой так не получается. Точнее, до двух недель все идет вроде бы нормально, клетки исправно делятся, и, лишь когда должна начаться дифференцировка тканей, все стопорится.
— Размышляя в университете над этой проблемой, — вспоминает Зубко, — я решился на такой опыт: взял куриное яйцо, систему вроде бы абсолютно автономную, лишил его скорлупы, вылил содержимое в сосуд и стал наблюдать, как события начнут развиваться дальше. И вначале все шло более или менее нормально. Пока не пришел черед образованию кровеносной системы зародыша. Тут-то и выяснилось, что скорлупа зародышу очень нужна. Она служит и опорой — так плющ карабкается по стене здания, цепляется за нее — и мембраной, обеспечивающей особый режим дыхания… Моя затея обмануть природу, выпестовать птенца из лишенного скорлупы яйца провалилась. Теперь вы должны понять, отчего в искусственных условиях из животной клетки не удается получить взрослое животное — мышь или, допустим, собаку. И огромное счастье для нас, исследователей, что с растениями тот же номер проходит. Хотя и этого добиться порой бывает очень нелегко…
Воспроизвести из отдельной клетки целое растение — такая задача во многих случаях решается, но гораздо сложнее проблема — «сплавить», «срастить» гены, создав диковинный гибрид.
— При обычном половом способе скрещивания, — рассказывал Зубко, — дает себя знать несовместимость органов размножения растений, есть еще и гены несовместимости, «сторожевые» гены. Если б этих и иных «заборов» не было, в растительном царстве возникли бы хаос и неразбериха. Если б не существовала ювелирная отделка каждой отдельной растительной структуры, что и отличает данный конкретный тип растений от всех остальных, земная флора не создала бы высших растений, эти высочайшие образцы эволюционного процесса.
Стоит ли удивляться, что пока чаще всего в результате клеточной хирургии мы получаем создания разной, так сказать, степени инвалидности. Природа безжалостно убивает свои неудачные поделки, а человек ради их необычных свойств щадит. Гениальные дети обычно отличаются хрупким здоровьем, очень ранимы и физически и нравственно… Природа никогда не подарит нам помесь слона с амебой, мы же надеемся когда-нибудь соединить, например, мох с рожью. Выйдет монстр, уродец? Не беда! Ведь мы получим богатейшую научную информацию, начнем осознавать пределы возможностей клеточной инженерии, ее диапазон на данный момент развития нашей науки. Да и вообще, уродство… красота… Все эти категории зыбки, условны: к любому новшеству мы привыкаем не сразу, и аномалия, отклонение от нормы могут постепенно превратиться в высшее изящество и совершенство!..
Зубко ставит на стол несколько растений. Вижу удивительное, совершенно белое растение-альбинос, рядом — нормальный зеленый росток, чуть поодаль — странная помесь: на стебле белые листья прихотливо чередуются с зелеными, есть и окрашенные частично в белые, частично в зеленые тона. Михаил объясняет, что можно было бы скроить и зелено-бело-красную мозаику листьев. К чему такой маскарад? Так легче визуально, без хитрых анализов, отбирать нужные экспериментатору формы.
Если взять клетку и повредить в ней один из генов, ответственных за синтез хлорофилла, образование этого зеленого пигмента прекратится — так можно вырастить в пробирке белое бесхлорофилльное растение. В природных условиях оно обречено, ибо в нем не образуется главный продукт фотосинтеза — углеводы. Однако в пробирке, на питательной среде,
К той же серии маркировочных опытов относится и такой. Генные инженеры взяли светлячка и выделили из него гены, обусловливающие свечение. Затем их встроили в клетку табака. И — поразительно — табак стал вырабатывать люцеферин, растение светилось в темноте!
Когда начинаешь размышлять о клеточной инженерии, ее успехах — в сознании в первую очередь тотчас же всплывает факт получения учеными гибрида картофеля и томата. Его можно звать по-разному: «помитофелем», «картомидором», «потомейтосом» (эту кличку придумали в ФРГ). Диво-дивное! Неужто создано растение, способное одаривать нас летом помидорами, а осенью — картошкой? Увы! Хотя такое растение и сконструировано, пока оно бесплодно и остается не более чем лабораторным курьезом: никаких полезных признаков — ни клубней картофеля, ни помидоров — растение не выказывает. И все же это большой успех — ведь в природе такой гибрид невозможен!
— Этот пример характерен. Иллюстрирует непонимание реальных возможностей клеточной инженерии, — говорит Зубко. — Логика природы и логика человека различны. Когда художник смешивает желтую краску с синей и получает на палитре зеленый цвет, это никого не удивляет. Но, слив воедино клетки капусты и редьки, мы отчего-то уверены, что обязательно будем иметь и капустные листья и съедобный корнеплод… Желаем, но вынуждены довольствоваться гибридом, который, к нашему огорчению, отчего-то утерял сразу и капустные и редечные свойства. А стоит ли этому удивляться? В известной басне Крылова лебедь, рак да щука тянут в разные стороны, и воз топчется на месте. И в экспериментах с капусторедькой и картомидором происходит, кажется, то же самое.
Помитофель? Возможно, в конце концов он будет получен, но должны пройти годы исследований, должно возникнуть настоящее понимание законов, по которым хромосомы различных видов соединяются при клеточном слиянии. А сразу, с первой попытки многого не добьешься.
Выходит, надо постепенно убедить Природу, что ей не чужды не только томаты и картофель, но и их экзотическое сочетание — помитофель?
— Что-то в этом роде. А сейчас мы словно бы пытаемся скрестить мотоцикл с трактором и ждем, что результирующий механизм будет и стремителен, как мотоцикл, и мощен, как трактор. По-видимому, в организм растения необходимо ввести какие-то небывалые свойства, зарядить его колоссальным биологическим потенциалом. Ныне возможности биоконструкторов еще очень ограничены. Как бы это понятней пояснить?.. Мы можем, к примеру, взять велосипед и его педаль заменить чем-то, что выполняло бы ту же роль, роль рычага. Или руль велосипеда: его можно причудливо изогнуть, или, скажем, сделать круглым, как у автомашины. И там и тут перемены малосущественны, фактически всякий раз мы получаем после дизайнерско-конструкторских манипуляций все тот же велосипед.
— Значит, велосипед с крыльями — пустая мечта, научная небылица?
— Кто знает! Абсолютного запрета на создание крылатого велосипеда нет. Вопрос только в том, как должен выглядеть тот приводимый ногами в движение мотор, который поднимет велосипед к облакам. И, видимо, подобные задачи станут нам под силу, когда мы поймем, как функционируют уже не отдельные гены, а их большие комплексы, генные ансамбли. Возьмем проблему азотфиксирующих растений. Эту идею фикс генных инженеров: растений, способных черпать азот не из почвы, а непосредственно из воздуха, как то умеют делать некоторые микробы. Выяснилось, что в свойстве этом повинен целый «оркестр» генов, насчитывающий порядка полутора десятков генных единиц. И еще стало понятно: любая произвольная перестановка генов нарушает слаженную работу всего ансамбля, и потому нежелательна.