Язык программирования Си. Издание 3-е, исправленное
Шрифт:
Фактически объединение - это структура, все элементы которой имеют нулевое смещение относительно ее базового адреса и размер которой позволяет поместиться в ней самому большому ее элементу, а выравнивание этой структуры удовлетворяет всем типам объединения. Операции, применимые к структурам, годятся и для объединений, т. е. законны присваивание объединения и копирование его как единого целого, взятие адреса от объединения и доступ к отдельным его элементам.
Инициализировать объединение можно только значением, имеющим тип его первого элемента; таким
В главе 8 (на примере программы, заведующей выделением памяти) мы покажем, как, применяя объединение, можно добиться, чтобы расположение переменной было выровнено по соответствующей границе в памяти.
6.9 Битовые поля
При дефиците памяти может возникнуть необходимость запаковать несколько объектов в одно слово машины. Одна из обычных ситуаций, встречающаяся в задачах обработки таблиц символов для компиляторов, - это объединение групп однобитовых флажков. Форматы некоторых данных могут от нас вообще не зависеть и диктоваться, например, интерфейсами с аппаратурой внешних устройств: здесь также возникает потребность адресоваться к частям слова.
Вообразим себе фрагмент компилятора, который заведует таблицей символов. Каждый идентификатор программы имеет некоторую связанную с ним информацию: например, представляет ли он собой ключевое слово и, если это переменная, к какому классу принадлежит: внешняя и/или статическая и т. д. Самый компактный способ кодирования такой информации - расположить однобитовые флажки в одном слове типа char или int.
Один из распространенных приемов работы с битами основан на определении набора "масок", соответствующих позициям этих битов, как, например, в
или в
Числа должны быть степенями двойки. Тогда доступ к битам становится делом "побитовых операций", описанных в главе 2 (сдвиг, маскирование, взятие дополнения). Некоторые виды записи выражений встречаются довольно часто. Так,
устанавливает 1 в соответствующих битах переменной flags,
обнуляет их, a
оценивает условие как истинное, если оба бита нулевые.
Хотя научиться писать такого рода выражения не составляет труда, вместо побитовых логических операций можно пользоваться предоставляемым Си другим способом прямого определения и доступа к полям внутри слова. Битовое поле (или для краткости просто поле) - это некоторое множество битов, лежащих рядом внутри одной, зависящей от реализации единицы памяти, которую мы будем называть "словом". Синтаксис определения полей и доступа к ним базируется на синтаксисе структур. Например, строки #define, фигурировавшие выше при задании таблицы символов, можно заменить на определение трех полей:
Эта
На отдельные поля ссылаются так же, как и на элементы обычных структур: flags.is_keyword, flags.is_extern и т.д. Поля "ведут себя" как малые целые и могут участвовать в арифметических выражениях точно так же, как и другие целые. Таким образом, предыдущие примеры можно написать более естественно:
устанавливает 1 в соответствующие биты;
их обнуляет, а
проверяет их.
Почти все технические детали, касающиеся полей, в частности, возможность поля перейти границу слова, зависят от реализации. Поля могут не иметь имени; с помощью безымянного поля (задаваемого только двоеточием и шириной) организуется пропуск нужного количества разрядов. Особая ширина, равная нулю, используется, когда требуется выйти на границу следующего слова.
На одних машинах поля размещаются слева направо, на других - справа налево. Это значит, что при всей полезности работы с ними, если формат данных, с которыми мы имеем дело, дан нам свыше, то необходимо самым тщательным образом исследовать порядок расположения полей; программы, зависящие от такого рода вещей, не переносимы. Поля можно определять только с типом int, а для того чтобы обеспечить переносимость, надо явно указывать signed или unsigned. Они не могут быть массивами и не имеют адресов, и, следовательно, оператор & к ним не применим.
Глава 7. Ввод и вывод
Возможности для ввода и вывода не являются частью самого языка Си, поэтому мы подробно и не рассматривали их до сих пор. Между тем реальные программы взаимодействуют со своим окружением гораздо более сложным способом, чем те, которые были затронуты ранее. В этой главе мы опишем стандартную библиотеку, содержащую набор функций, обеспечивающих ввод-вывод, работу со строками, управление памятью, стандартные математические функции и разного рода сервисные Си-программы. Но особое внимание уделим вводу-выводу.
Библиотечные функции ввода-вывода точно определяются стандартом ANSI, так что они совместимы на любых системах, где поддерживается Си. Программы, которые в своем взаимодействии с системным окружением не выходят за рамки возможностей стандартной библиотеки, можно без изменений переносить с одной машины на другую.
Свойства библиотечных функций специфицированы в более чем дюжине заголовочных файлов; вам уже встречались некоторые из них, в том числе ‹stdio.h›, ‹string.h› и ‹ctype.h›. Мы не рассматриваем здесь всю библиотеку, так как нас больше интересует написание Си-программ, чем использование библиотечных функций. Стандартная библиотека подробно описана в приложении B.