Юный радиолюбитель
Шрифт:
Рис. 248. Фототранзистор и схема era включения
Если в коллекторную цепь включить миллиамперметр, он при сильном освещении кристалла транзистора покажет возрастающий до нескольких миллиампер коллекторный ток. Это свойство транзисторов, аналогичное свойствам фотоэлементов с внутренним фотоэффектом, широко используется радиолюбителями-экспериментаторами в самодельных приборах-автоматах.
Чем
У транзистора серии П213, например, при освещении его кристалла электролампой мощностью 75-100 Вт коллекторный ток возрастает до 1 А и больше. Такой ток достаточен для питания, например, малогабаритного электродвигателя «Пионер», начинающего автоматически работать при освещении фоторезистора.
Электромагнитное реле — это электромеханический прибор, который может управлять каким-либо другим электрическим прибором (механизмом) или электрической цепью. Схематическое устройство и принцип работы электромагнитного реле иллюстрирует рис. 249. Реле представляет собой стержень из мягкого железа — сердечник, на который насажена катушка, содержащая большое число витков изолированного провода. На Г-образном корпусе, называемом ярмом, удерживается якорь пластинка тоже мягкого железа, согнутая под тупым углом. Сердечник, ярмо и якорь образуют магнитопровод реле. На ярме же укреплены пружины с контактами, замыкающие и размыкающие питание исполнительной цепи, например цени питания сигнальной лампы накаливания Н1. Пока ток через обмотку реле не идет, якорь под действием контактных пружин находится на некотором расстоянии от сердечника. Как только в обмотке появляется ток, его магнитное поле намагничивает сердечник и он притягивает якорь. В этот момент другой конец якоря налавливает на контактные пружины и замыкает исполнительную цепь. Прекращается ток в обмотке исчезает магнитное поле, размагничивается сердечник, и контактные пружины, выпрямляясь и разрывая цепь исполнения, возвращают якорь реле в исходное положение.
В зависимости от конструктивных особенностей контактных пружин различают реле с нормально разомкнутыми, нормально замкнутыми и перекидными контактами. Нормально разомкнутые контакты при отсутствии тока в обмотке реле разомкнуты (рис. 249, а), а при токе в обмотке они замыкаются. Нормально замкнутые контакты, наоборот, при отсутствии тока в обмотке замкнуты (рис. 249, б), а при срабатывании реле они размыкаются. У перекидных контактов (рис. 249, в) средняя пружина, связанная с якорем и при отсутствии тока замкнутая с одной из крайних пружин, при срабатывании реле перекидывается на другую крайнюю пружину и замыкается с ней.
Рис. 249. Схематическое устройство, включение и обозначение электромагнитного реле и его контактов
Многие реле имеют не одну, а несколько групп контактных пружин, позволяющих с помощью импульсов тока, создающихся в обмотке реле, управлять на расстоянии несколькими цепями исполнения одновременно, что и используется в автоматике.
На принципиальных схемах обмотки электромагнитных реле обозначают прямоугольником и буквой К с цифрой порядкового номера реле в устройстве.
Контакты этого реле обозначают той же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает порядковый номер реле, а вторая — порядковый номер контактной группы этого реле.
В зависимости от назначения электромагнитные реле имеют разные конструкции корпусов и якорей, пружинных контактов, различные данные обмоток. Но принцип работы всех реле одинаков: при некотором значении тока, протекающего через обмотку, реле срабатывает и его якорь, притягиваясь к намагниченному сердечнику, замыкает или размыкает контакты исполнительной цепи.
Для автоматически действующих устройств, о которых речь пойдет в этой и некоторых других беседах, а также для аппаратуры телеуправления, которой будет посвящена специальная беседа, желательно использовать малогабаритные реле постоянного тока, например РЭС-9, РЭС-10, РСМ (рис. 250).
Рис. 250. Электромагнитное реле типа РСМ
Основные данные таких реле приведены в приложении 12.
Основной характеристикой электромагнитного реле является его чувствительность мощность тока, потребляемого обмоткой, при которой реле срабатывает. Чем меньше электрическая мощность, необходимая для срабатывания реле, тем реле чувствительнее.
Пригодность реле для того или иного автоматического устройства обычно оценивают тем минимальным значением тока, при котором оно срабатывает. Если сравнить два реле, одно из которых срабатывает при потребляемой мощности 80 мВт, а второе при мощности 40 мВт, то второе реле считается более чувствительным, чем первое. Как правило, обмотка более чувствительного реле содержит большее число витков и имеет большее сопротивление.
Для наших целей нужны будут реле, надежно срабатывающие при токе 6-10 мА и напряжении источника питания 4,5–9 В, что соответствует мощности 27–90 мВт. Сопротивление обмоток таких реле должно быть 120–700 Ом. Этим требованиям могут отвечать, например, реле РЭС-10 с паспортом РС4.524.302 или РС4.524.303. Сопротивление обмотки первого из этих реле 630, второго 120 Ом.
Для проверки электромагнитного реле, паспортные данные которого тебе неизвестны, можно воспользоваться батареями GB1 напряжением 9-12 В (две-три батареи 3336Л) и GB2 — напряжением 4,5 В (батарея 3336Л), переменным резистором R сопротивлением 1–1,5 кОм, миллиамперметром РА на ток 20–30 мА, сигнальной лампой Н (индикатором) на напряжение 3,5 В (рис. 251).
Рис. 251. Схема проверки электромагнитного реле
При замыкании контактов К1.1 лампа Н загорается, а при размыкании гаснет. Изменяя сопротивление цепи резистором R и следя за показаниями миллиамперметра, легко определить токи, соответствующие моментам срабатывания и отпускания реле. Эти сведения облегчат и ускорят работы по налаживанию приборов-автоматов.