Юный техник, 2005 № 02
Шрифт:
К. ПРЯНИЧНИКОВ
СЕКРЕТЫ СТАРЫХ МАСТЕРОВ
Витамин для стали
Давным-давно мастера выяснили странную вещь. Нож, откованный из свежевыплавленного куска стали, получался плохим, быстро тупился. Правда, чисто опытным путем кузнецы все-таки научились делать мечи и сабли, остававшиеся острыми как бритва даже после удара о стальной шлем врага. Но они не знали причин своего успеха.
Вот как, например, по рассказу одного старого русского офицера, долгое время жившего в доме дагестанского кузнеца и наблюдавшего его работу, делались кинжалы и шашки.
Кузнец покупал моток стальной проволоки и разрубал его на две части. Одну из них он вешал на солнце, «чтобы напиталась живой силой его лучей». Другую — закапывал в землю у себя в коровнике, где она получала силу от матери-земли. Через полгода обе половинки свивали в один жгут, нагревали в горне и начинали ковать (рис. 1).
Примерно через неделю ковки получалась плотная, вполне однородная пластина, на поверхности которой от проволоки оставался лишь едва различимый узор в виде змеек. Путем ковки и последующей обточки на камне ей придавали форму лезвия. Затем, вжигая золото, покрывали узорами и письменами. После этого — закалка, окончательная шлифовка и полировка. На изготовление одного кинжала уходило более месяца. Еще дольше, до года, делали сабли и шашки. Изделия получались замечательные. Шашку можно было, не опасаясь сломать, изогнуть в кольцо, после чего она со свистом выпрямлялась, оставаясь прямой как стрела. Сказать, что такая шашка была острой как бритва, значит, ничего не сказать. Остроту ее заточки горцы измеряли, бросая на лезвие женский платок. Он, опускаясь на землю, распадался на две части. Такие ножи, сабли и шашки не теряли свой остроты при ударе о твердый предмет. Однако они были дороги, очень трудоемки и, по сути, являлись произведениями искусства. Между тем численность армий во всех странах непрерывно росла. Вооружить миллионы солдат подобным оружием было невозможно.
Практичные англичане еще в начале XIX века поставили производство холодного оружия на поток. Делали быстро, много и дешево. Конечно, оружие не имело столь высокого качества, как оружие мастеров Востока, но для сражений годилось.
У английских мастеров тоже был некий секрет производства, не находивший научного объяснения. Англичане применяли металл, долго (10–20 лет) пролежавший на воздухе. Только из него получалось оружие, способное стойко «держать жало». Но такого металла явно не хватало. Создавать огромные склады, где бы под открытым небом десятилетиями лежали заготовки, слишком дорого.
В 80-е годы XIX века английские оружейники облюбовали старинный железный мост, металл которого годился для изготовления оружия великолепного качества. Мост разобрали и вместо него построили новый.
Примерно в это самое время выяснили, что высокую прочность металлу сообщает не просто время выдержки, а медленное проникновение азота в его поверхностный слой. А раз так, то этот процесс можно произвести в искусственных условиях и гораздо быстрее. Стальные детали помещали в специальные ящики и раскладывали на сетке из никелевой проволоки (рис. 2).
Затем ящики ставили в электропечь. В каждый из них через отверстия непрерывно продували
Тут прервем наш рассказ и поговорим о прочности материалов вообще. Часто думают, что она вызвана силами молекулярного притяжения. Это верно, но лишь отчасти. Расчеты показывают, что если бы это было так, то все материалы были бы в тысячи раз прочнее, чем мы наблюдаем. Оказывается, во всех материалах действует еще и процесс образования дефектов кристаллической решетки. На них собираются и концентрируются в очень малом объеме любые силы, приложенные к материалу. С этих-то мест — их называют местами концентрации напряжения — и начинается разрушение.
Попробуйте намотать на руки и разорвать на две части обычный полиэтиленовый пакет. Это нелегко! Однако стоит проткнуть его ножом, и он мгновенно разорвется по дырке.
Однажды ученые определили предел прочности кристалла каменной соли на разрыв. Получилось 200 кг на квадратный миллиметр — как у очень хорошей стали! Почему же мы обычно такой прочности у соли не наблюдаем? Причина проста. Все дело в дефектах структуры.
Все виды упрочняющей обработки любых материалов, по крайней мере, частично сводятся к устранению существующих в них дефектов. Их прекрасно «залечивают» растворенные в железе ионы азота. Но нитраты, соединения азота с железом, хоть они и сами по себе очень прочны, способны создавать новые дефекты. Потому процесс азотирования хорош в меру. И хотя азотированию поддаются многие сорта стали, у тех, что содержат алюминий, оно происходит особенно успешно: образуется твердый слой, который царапает стекло и может быть обработан только алмазом. Когда дагестанский кузнец закапывал проволоку в пропитанную мочой животных землю скотного сарая, он тем самым создавал условия для образования на ней азотно-аммиачных соединений. Напомним, что эту проволоку скручивали с проволокой, висевшей на солнце. После многократного разогрева и ковки азотистые соединения разлагались, и в заготовке кинжала возникал твердый раствор азота, придававший металлу упругость и твердость.
Сегодня производство холодного оружия отошло далеко на задний план, а азотирование широчайшим образом применяется во всех отраслях техники. Азотированную поверхность имеют рабочие поверхности измерительных инструментов, например, штангенциркулей или микрометров. Азотируют также трущиеся участки поверхности осей и валов. Особенно этот процесс важен для шестерен. Азотированная поверхность не только снижает их износ, но и уменьшает силу трения зубцов шестерней. Механизмы становятся гораздо надежней и экономичней.
Не избежали применения азотирования и металлорежущие инструменты — фрезы, резцы, сверла. Но здесь условия работы поверхностного слоя особенно тяжелы.
На кромке резца токарного станка напряжение достигает предела прочности материала, температура может приближаться к 1000 °C. Плотность проходящего через нее потока энергии не ниже, чем у лазера противоракетной обороны. Для защиты кромки резца от разрушения на нее напаивают пластинки сверхтвердого вольфрамового сплава. Но это не самое хорошее решение. Такой сплав очень тверд, стоек к износу и в то же время хрупок. Поэтому твердосплавную пластину приходится делать достаточно толстой. Кроме того, вольфрамовый сплав плохо проводит тепло и сильно нагревается при работе. Из-за этого ухудшается качество обработки поверхности детали. Поэтому додумались слой сверхтвердого, сверхстойкого к износу материала наносить на подложку из твердой, как стекло, азотированной стали.