Юный техник, 2005 № 02
Шрифт:
Однако в 1919 году, во время полного солнечного затмения, астрономам удалось зарегистрировать траекторию луча от дальней звезды, проходившего около поверхности Солнца. И они заметили, что луч… искривился. Стало быть, Эйнштейн прав: в природе могут существовать условия, приводящие к искажению законов геометрической оптики!
С той поры время от времени экспериментаторы продолжают ставить разные опыты в подтверждение этой теории. Не так давно, например, обнаружено хоть и незначительное, но все-таки изменение орбит двух маленьких искусственных спутников Земли.
Почему
И вот Игнацио Чьюфолини из итальянского Университета Лечче и Эррикос Павлис из американского Университета Мэриленда в течение 11 лет собирали данные об изменениях орбиты. Всего ими было проведено около 100 млн. измерений, прежде чем они объявили о замеченном ими эффекте.
Объяснение же ему, ссылаясь опять-таки на Эйнштейна, они придумали такое. Всем известно, что, когда в атмосфере возникает смерч — этакий воздушный волчок, — он вовлекает во вращение и окружающие его частицы воздуха и пыли, даже мелкие и легкие предметы. А что происходит, когда вращается такое огромное и массивное небесное тело, как наша Земля? Она не только вовлекает во вращение всю атмосферу, но и околоземное пространство-время, в какой-то мере искажая, искривляя его. Вот эти-то искажения и влияют на движение спутников. В точности так, как это предсказывал Эйнштейн.
На том можно бы поставить точку. Однако далеко не все пока согласны с выводами итальянского и американского исследователей. Скептики справедливо указывают, что погрешность сделанных ими измерений достигает 10 %, а при такой точности немудрено и выдать желаемое за действительное. Поэтому полученные данные должны быть перепроверены. Для этого в апреле 2004 года в космос был запущен «Гравитационный зонд Б». Этот аппарат имеет на борту четыре прецизионных гироскопа (охлажденные почти до абсолютного нуля идеальные кварцевые сферы). Ось вращения таких гироскопов должна постоянно находиться в одном и том же направлении. Однако, если общая теория относительности справедлива, искривление пространства-времени массой Земли приведет к отклонению осей гироскопов примерно на 42 угловые миллисекунды в год.
Первые данные с «Гравитационного зонда Б» ожидаются в начале 2006 года. Пока исследователи выжидают, когда встревоженные вибрациями запуска гироскопы окончательно успокоятся. А вообще, как рассуждают специалисты, особенно зримо данный эффект должен проявить себя вблизи вращающейся черной дыры. Так что в будущем, кто знает, дело может дойти до запуска исследовательского зонда и в сторону этого загадочного объекта.
Вот какую сумятицу внес Альберт Эйнштейн в умы ученых. И сто лет спустя они все еще не могут успокоиться…
С.НИКОЛАЕВ
ПОДРОБНОСТИ ДЛЯ ЛЮБОПЫТНЫХ
Измерители жары и холода
Как измерить температуру? Вопрос этот не так прост, как может показаться на первый взгляд. Даже при болезни в мире все реже применяют айболитовские стеклянные термометры с серебристым столбиком ртути. Что же касается других случаев…
Многие, впрочем, даже не задумываются о том, что они подразумевают, употребляя слово «температура». Жарко на улице, значит, у воздуха температура высокая, холодно — значит низкая.
Для физиков температура тоже не представляет загадки. С их точки зрения температура указывает на скорость теплового движения молекул. Как говорит физик из Йельского университета, доктор Роберт Фолькоп, «это некоторая мера беспорядочного движения молекул и атомов с различными степенями свободы».
Взять, например, молекулы воздуха или воды, которые беспорядочно ударяются друг о друга. При этом они передают друг другу энергию, причем распределение скоростей движения описывается нормальной кривой — колоколообразной линией, пик которой приходится как раз на среднюю температуру молекул. Чем выше температура, тем стремительнее они мечутся. С понижением же температуры движение все медленней, а при абсолютном нуле замирает совсем.
Впрочем, прежде чем мы поговорим подробнее об измерениях температуры в некоторых экстремальных случаях, давайте сначала разберемся в нынешних шкалах температур. Откуда они взялись и почему и по сей день в обиходе сразу три разных шкалы?
Первую шкалу придумал немецкий физик Габриэль Фаренгейт. Он же, кстати, в 1709 году изобрел распространенный поныне спиртовый термометр, а пять лет спустя и всем известный медицинский ртутный градусник. Но если градусниками Фаренгейта многие пользуются и по сей день, то с его шкалой получилась некая неувязка. Точку замерзания воды он почему-то принял за 32 градуса, а точку ее кипения — за 212. Шведский астроном Андерс Цельсий в 1742 году предложил иную, более логичную, шкалу. Точка замерзания воды, по его мнению, равнялась 100 градусам, а точка кипения — нулю. С ним согласились, правда, с существенной поправкой. Коллеги доктора Цельсия перевернули его шкалу, решив, что логичнее считать точку замерзания воды равной 0 °C, а точку кипения — 100 °C. Эта шкала наиболее распространена и по сей день. А вот шкалу Фаренгейта используют лишь в США. И то последнее время там стали привыкать к шкале Цельсия.
И наконец, шотландский химик У. Томсон, известный больше как лорд Кельвин, предложил в 1816 году шкалу абсолютных температур, приняв за ноль ту температуру, при которой прекращается тепловое движение атомов. Это происходит примерно при -273 °C, так что, согласитесь, пересчитывать шкалу Кельвина в шкалу Цельсия не очень-то удобно. Поэтому кельвинами пользуются в основном лишь исследователи сверхнизких температур. Так и сосуществуют по сей день сразу три шкалы температур.
Причем поскольку температура кипения воды меняется при изменении давления, то ныне за основу шкалы Кельвина взята так называемая тройная точка для воды, при которой при неких физических условиях могут мирно сосуществовать лед, вода и пар. Она равна 0,01 °C или 276,16 К.