Юный техник, 2009 № 05
Шрифт:
— Не может этого быть! — вытаращил глаза Тик.
— Не может? — Парень криво усмехнулся и замахнулся вдруг на Тика острым длинным ножом, которым резал до этого торт.
Тик невольно отпрянул, но мог бы этого и не делать: нож завис в воздухе, а потом медленно и плавно, словно легкое перышко, опустился на стол.
— Вот тебе и все игры, — вздохнул парень и сунул в рот большой кусок торта.
— Ну, на компьютере давай поиграем… — предложил Тик, неожиданно поняв, что многое из этой области он вполне отчетливо помнит.
— Фо фе фамое, — произнес набитым ртом парень.
Потом сглотнул и пояснил уже отчетливо: —
— Тогда искупаемся пойдем, — почти безнадежно уже сказал Тик. — В бассейне.
— Ага, — ехидно скривился парень. — Так тебя вода к себе и подпустит! А вдруг утонешь?
— Но почему?! — воскликнул Тик. — Почему здесь это происходит? И что здесь вообще такое? Что это за дворец такой ненормальный?
— Чем тебе мой дворец не нравится?.. — прищурился толстый парень. — Знаешь что, убирайся-ка ты отсюда!
(Продолжение следует)
ПАТЕНТНОЕ БЮРО
В этом номере мы расскажем о дирижабле без двигателя Андрея Селивановаиз Архангельска, электрическом насосе Серафима Букжлииз Кишинева (Республика Молдова), а также о доме из надувных блоков Александра Огородоваиз г. Колпашева Томской области.
ДИРИЖАБЛЬ БЕЗ ДВИГАТЕЛЯ
Андрей Селиванов из Архангельска предложил тепловой дирижабль, который, по его словам, не нуждается в двигателе. Гондола дирижабля снабжена крыльями, как у планера. Когда зажигается горелка, аэростат начинает подниматься. В этот момент крыльям придается такой наклон (угол атаки), что появляется тяга, направленная вперед. Затем горелка гаснет, и начинается спуск. Крыльям придают другой наклон, опять же, создающий тягу, направленную вперед.
Если применить легкие крылья от планера, то на каждые 100 метров подъема или спуска аэростат будет пролетать до 5 км.
Андрей заблуждается, утверждая, что его дирижабль летает без двигателя. На самом деле и тепловой аэростат, и его крылья образуют систему, которая вся целиком является тепловым двигателем, к работе которого применимы все законы термодинамики. В частности, ее КПД зависит от разности температур цикла его работы: чем больше разность между самой высокой и самой низкой температурой воздуха, наполняющего аэростат, тем КПД выше.
Материал оболочек современных тепловых аэростатов выдерживает температуру воздуха не более 120 °C. При спуске она снижается примерно до 100 °C. Термический КПД такого аэростата из-за потерь тепла через оболочку окажется маловат и не превысит 1–2 %. Это, конечно же, очень мало. Для серьезного повышения КПД есть только один путь — увеличение температуры воздуха в аэростате. Сегодня существуют синтетические пленки, выдерживающие более 700 °C. Если сделать дирижабль из них, то термический КПД его в принципе может достигнуть 50 %. Правда, часть тепла уйдет через стенки оболочки, но все равно расход топлива может оказаться ниже, чем у дирижабля с обычными двигателями.
Отметим, что еще в 1880 г. с проектом аналогичного аэростата, только наполнявшегося не воздухом, а перегретым паром, выступил французский изобретатель А. Дерваль. Его аэростат также был снабжен крыльями. Он то поднимался, то опускался и при этом продвигался вперед.
По подсчетам Дерваля, аэростату объемом 3500 м 3для полета со скоростью 5 км/ч было нужно на час 80 кг воды и 10 кг угля. Столь малая скорость получалась из-за очень низкой эффективности крыльев того времени. Аэростат так и не был построен. А проект Дерваля известен лишь историкам техники, и юный изобретатель про него вряд ли знал. Экспертный совет ПБ присуждает Андрею Селиванову Авторское свидетельство.
НАСОС ПРИНЦИПИАЛЬНО НОВОГО ТИПА…
…предложил восьмиклассник Серафим Буюкли из Кишинева. Насос представляет собою электрический конденсатор, составленный либо из двух изолированных друг от друга половинок металлического конуса, либо из двух непараллельных пластин. При подаче напряжения на обкладки таких конденсаторов вода, по мнению Серафима, «начнет втягиваться в ту сторону, где силовые линии гуще».
Насос действительно будет работать, но несколько не так, как думает изобретатель…
Начнем с того, что обычная вода электропроводна. Поэтому разность потенциалов между обкладками конденсатора будет ничтожна, а электростатические силы очень малы, и насос вряд ли сможет работать. Дистиллированная вода — другое дело. Она ток не проводит, так что электростатические силы проявятся в полной мере. Вообще же это устройство пригодно для любых непроводящих жидкостей и газов.
Чтобы понять, как работает насос Серафима Буюкли, достаточно обратить внимание на то, что под действием электрического поля находящаяся в конденсаторе жидкость притягивается к одной из стенок и соскальзывает с нее, словно сани со снежной горы.
Для выполнения расчета сил, действующих на жидкость в насосе, мы используем принцип наименьшего действия — принцип Мопертюи.
Пьер Луи Мопертюи(1698–1759).
В сильно упрощенном виде он формулируется так: «Всякая система стремится перейти в состояние, при котором ее потенциальная энергия минимальна» (именно поэтому книга падает на пол, а не на потолок).
На рисунке конденсатор с двумя расходящимися пластинами. Мысленно наполним его диэлектрической жидкостью, например, трансформаторным маслом, и подадим напряжение. Под его действием молекулы масла поляризуются и накопят некоторую энергию. (Отметим, что основная часть энергии конденсатора запасается в диэлектрике.)