Юный техник, 2009 № 05
Шрифт:
Если мощности не хватает, придется, чтобы увеличить площадь, присоединить второй поддон. Для этого очень острым ножом срежьте торцевые части и соедините оба поддона полосками скотча. Для этого положите их на ровную поверхность и наклейте скотч по бокам. Корпус модели сразу же приобретет жесткость и правильную форму. Затем оклейте стык полосками скотча с обеих сторон. Возможно, из-за чисто технологического различия в размерах поддонов в районе стыка образуется уступ, через который будет уходить воздух. Устраните его, наклеив полоску скотча вдоль стыка. На верхней части корпуса также при помощи двухстороннего скотча наклейте батареи с разъемами и ходовой вентилятор.
Простейшая
А. ВАРГИН
Рисунки автора
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Усилители класса D
В последнее время все популярнее становятся усилители звуковой частоты (УЗЧ) класса D. Иногда их называют «цифровыми», полагая, что буква D происходит от слова Digital — цифровой, но это неверно, и этот вопрос мы еще обсудим. Начат промышленный выпуск микросхем для таких усилителей. Многие из них требуют минимальной «обвязки», то есть внешних навесных элементов — резисторов и конденсаторов.
Область применения усилителей класса D— звуковые (аудио) комплексы, автомобильные приемники и магнитолы, проигрыватели компакт-дисков, аудиоплееры, телефоны и другая техника. Первое, что бросается в глаза при ознакомлении с рекламными проспектами или справочными листками (даташитами, как теперь говорят), — это небывалая экономичность и большая выходная мощность этих усилителей при малых размерах и минимальном выделении тепла, что в ряде случаев позволяет вообще отказаться от радиаторов.
В чем же причина столь высоких мощности, экономичности, а, следовательно, большого КПД таких усилителей? Чтобы в этом разобраться, нужно сначала ясно представить, как вообще работает усилитель и что такое классы усиления.
Понятие классов усиления ввели давно, когда транзисторов еще не было и все усилители строили на лампах. Проблемы экономичности усилителей стояли и тогда, может быть, даже острее, чем теперь, поскольку лампы требовали еще дополнительной энергии для накала.
Главный потребитель мощности в УЗЧ — выходной каскад, потому что именно он отдает усиленные колебания в нагрузку — динамический громкоговоритель или акустическую систему. А потребляет энергию он, естественно, от источника питания.
Рассмотрим простейший выходной каскад на одном транзисторе, работающий в классе А(рис. 1).
Напомним сразу, что коллекторный ток от источника питания через динамическую головку ВА1 и транзистор VT1 течет лишь
на базу транзистора подан положительный открывающий потенциал. Для кремниевых транзисторов (а подавляющее большинство современных транзисторов именно кремниевые) он должен быть не менее 0,5…0,6 В. При дальнейшем увеличении положительного напряжения на базе ток транзистора растет очень резко. Как говорят, входная характеристика транзистора нелинейна. По этой причине управлять транзистором от источника переменного звукового напряжения невыгодно — будут наблюдаться очень большие искажения сигнала.
Транзистор — токовый прибор, поэтому и управлять им нужно током, другими словами, от источника с высоким внутренним сопротивлением. Для простоты на схеме (рис. 1) показан резистор R1, имитирующий внутреннее сопротивление источника. На практике, при грамотном проектировании усилителя, используют предварительные усилительные каскады с высоким выходным сопротивлением. Отношение коллекторного тока транзистора к току базы называется коэффициентом передачи по току и обозначается как (ранее) или В ст. У современных транзисторов он достигает нескольких десятков и даже сотен.
Итак, чтобы открыть транзистор, нужно пропустить некоторый начальный ток через цепь базы. Он называется током смещения. Иногда его подают через дополнительный резистор прямо от источника питания. В нашей простейшей схеме ток смещения должен быть не меньше амплитуды переменного тока звуковой частоты, как показано на графике входного тока I вхна рисунке слева, иначе возникнут искажения.
Выходной ток (график справа) также будет содержать постоянную составляющую, которая нам, вообще-то, совсем не нужна. Но мы вынуждены мириться с ее присутствием, если не хотим искажений звукового сигнала. КПД усилителя класса А очень низок, лишь при больших сигналах (при максимальной громкости) он достигает примерно 30 %, а при малых сигналах совсем мал. Ведь мы не можем убрать постоянную составляющую выходного тока I о, иначе при больших сигналах появятся искажения. Другой недостаток — постоянный ток I очерез головку громкоговорителя ухудшает ее работу, нагревает звуковую катушку и выдвигает ее из зазора магнитной системы.
Если последнее устранить, то эти усилители воспроизводят звук очень чисто, практически без искажений при малых сигналах.
Усилители следующего, класса В, работают вообще без начального смещения. При этом транзистор открывается только положительной полуволной входного сигнала, а отрицательную волну не пропускает совсем (рис. 2).
Но зато при отсутствии сигнала и ток через транзистор равен нулю. КПД этого усилителя достигает 60…70 %.
Такие усилители не годятся для усиления звука, но нашли применение в радиопередатчиках, где нагрузкой транзистора служит не динамическая головка, а выходной колебательный контур, который в силу своей «инерционности» дополняет колебания второй полуволной, и на выходе передатчика получается синусоидальный сигнал. Для еще большего повышения КПД в передатчиках используют и усилители класса С, в которых на транзистор подают некоторое напряжение смещения, но запирающее, отрицательной полярности. При этом ток через транзистор имеет вид еще более коротких импульсов, ударно возбуждающих выходной колебательный контур.